SIEMENS

Product Overview	
nstallation	
Addressing	
Wiring	
Networking	
Commissioning	
Maintenance	
CPUs	
CPU 31x-2 as DP Master/DP Slave and Direct Communicatio	n
Cycle and Response Times of t S7-300	he
CPU Functions Dependent on t CPU and <i>STEP 7</i> Version	ne
Tips and Tricks	
Appendices	

Glossary, Index

SIMATIC

S7-300 Programmable Controller Hardware and Installation

Manual

This manual is part of the documentation package with order no.: **6ES7 398-8AA03-8BA0**

EWA 4NEB 710 6084-02

Safety Guidelines

This manual contains notices which you should observe to ensure your own personal safety, as well as to protect the product and connected equipment. These notices are highlighted in the manual by a warning triangle and are marked as follows according to the level of danger:

Danger

indicates that death, severe personal injury or substantial property damage **will** result if proper precautions are not taken.

Warning

indicates that death, severe personal injury or substantial property damage **can** result if proper precautions are not taken.

Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a particular part of the documentation.

Qualified Personnel

Only **qualified personnel** should be allowed to install and work on this equipment. Qualified persons are defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and systems in accordance with established safety practices and standards.

Correct Usage

Note the following:

Warning

This device and its components may only be used for the applications described in the catalog or the technical descriptions, and only in connection with devices or components from other manufacturers which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed correctly, and operated and maintained as recommended.

Trademarks

SIMATIC®, SIMATIC HMI® and SIMATIC NET® are registered trademarks of SIEMENS AG.

Some of other designations used in these documents are also registered trademarks; the owner's rights may be violated if they are used by third parties for their own purposes.

Copyright Siemens AG 1998 All rights reserved

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Disclaimer of Liability

© Siemens AG 1998

Technical data subject to change.

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual are reviewed regularly and any necessary corrections included in subsequent editions. Suggestions for improvement are welcomed.

Siemens AG Automation and Drives (A&D) Industrial Automation Systems (AS) Postfach 4848, D- 90327 Nürnberg

Siemens Aktiengesellschaft

Important Information

Purpose of the Manual

ww.DataSheet4U.com

- The information contained in this manual enables you to:
- Install and wire an S7-300 programmable controller.
- Look up operator entries, functional descriptions and the technical specifications relevant to the S7-300's CPUs.

You will find the function descriptions and technical specifications for the signal modules, power supply modules and interface modules in the *Module Specifications* Reference Manual.

Delivery Package

This documentation package (order number 6ES7 398-8AA03-8BA0) comprises two manuals and an instruction list with the following contents:

S7-300 Programmable Controller, Hardware and Installation

- Mechanical and electrical configuration
- Installation and wiring
- Preparing the S7-300 for operation
- Characteristics and technical data for the S7-300 CPUs

S7-300, M7-300 Programmable Instruction List Controllers, Module Specifications

- General technical data
- Power supply modules
- Digital modules
- Analog modules
- Order numbers for the S7-300

- Instruction set for all CPUs
- Brief description of instructions and execution times in relation to the individual CPUs

A detailed description of all instructions with examples can be found in the *STEP 7 manuals* (see Appendix H).

You can also order the instruction list separately: 6ES7 398-8AA03-8BN0

Scope of the Manual

This manual applies for the following CPUs:

CPU	Order No.	As of Version	
		Firmware	Hardware
CPU 312 IFM	6ES7 312-5AC02-0AB0	1.0.0	01
CPU 313	6ES7 313-1AD03-0AB0	1.0.0	01
CPU 314	6ES7 314-1AE04-0AB0	1.0.0	01
CPU 314 IFM	6ES7 314-5AE03-0AB0	1.0.0	01
CPU 315	6ES7 315-1AF03-0AB0	1.0.0	01
CPU 315-2 DP	6ES7 315-2AF03-0AB0	1.0.0	01
CPU 316-2 DP	6ES7 316-2AG00-0AB0	1.0.0	01
CPU 318-2	6ES7 318-2AJ00-0AB0	1.0.0	01

w.DataSheet4U.com

This manual describes all modules that are valid at the time the manual is released. For new modules or newer versions of modules, we reserve the option to add to the manual a product information containing the current information on this module.

Changes Since the Previous Version

The following changes have been made since the previous version (*S7-300 Programmable Controller, Hardware and Installation Manual* (order no. 6ES7 398-8AA02-8BA0), Edition 2):

- New CPUs:
 - CPU 316-2 DP
 - CPU 318-2 (Refer to Section11.1! It describes important differences between the CPU 318-2 and other CPUs).
- The CPU 316 is no longer included in the scope of delivery for the S7-300 and therefore not described in this manual.
- Separate versions for CPU firmware and hardware:
 - You can find the firmware version of the CPU (V 1.0.0) under the front cover, on the left next to the power supply connections.
 - You can find the hardware version of the CPU on the front cover.
- You can save the firmware of the CPU on the memory card (not 318-2).
- New for the CPU 315-2 DP
 - Routing
 - Direct communication
 - Equidistance

Standards, Certificates and Approvals

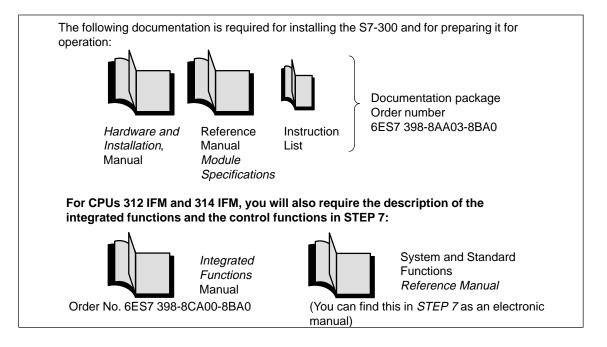
The S7-300 programmable controller meets the requirements and criteria of standard IEC 1131, Part 2. The S7-300 meets the requirements for the CE mark. Approvals for CSA, UL and FM have been granted for the S7-300.

See Appendix A for detailed information on standards and approvals.

Recycling and Disposal

www.DataSheet4U.com

The SIMATIC S7-300 can be recycled thanks to the low level of pollutants in its equipment.


Please contact the following address for environmentally-friendly recycling and disposal of your old SIMATIC equipment:

Siemens Aktiengesellschaft Anlagenbau und Technische Dienstleistungen ATD ERC Essen Recycling/Remarketing Fronhauser Str. 69 D-45127 Essen

Phone: +49 201/816 1540 (hotline) Fax: +49 201/816 1504

Documentation Required

Depending on the CPU, you require the following documentation for installing your S7-300:

Documentation for Programming

In Appendix H you will find a list of the documentation required to program and commission the S7-300. In addition, you will find a list of specialist books on programmable controllers.

CD-ROM

Furthermore, the complete SIMATIC S7 documentation is available on CD-ROM.

ww.DataSheet4U.com

Guide

To help you find special information quickly, the manual contains the following access aids:

- At the start of the manual you will find a complete table of contents and a list of the diagrams and tables that appear in the manual.
- An overview of the contents of each section is provided in the left-hand column on each page of each chapter.
- You will find a glossary in the appendix at the end of the manual. The glossary contains definitions of the main technical terms used in the manual.
- At the end of the manual you will find a comprehensive index which gives you rapid access to the information you need.

Additional Support

Please contact your local Siemens representative if you have any queries about the products described in this manual. A list of Siemens representatives worldwide is contained in the appendix to this manual.

If you have any questions or suggestions concerning this manual, please fill in the form at the end of this manual and return it to the specified address. Please feel free to enter your personal assessment of the manual in the form provided.

We offer a range of courses to help get you started with the SIMATIC S7 programmable controller. Please contact your local training center or the central training center in Nuremberg, D-90327 Germany (tel. +49 (911) 895-3154)

Constantly Updated Information

You can receive up-to-date information on SIMATIC products from the following sources:

- On the Internet at http://www.ad.siemens.de/
- On the fax polling number +49-8765-93 00-55 00

In addition, the SIMATIC Customer Support provides up-to-date information and downloads for users of SIMATIC products:

- On the Internet at http://www.ad.siemens.de/simatic-cs
- Via the SIMATIC Customer Support mailbox on the following number: +49 (911) 895-7100

To access the mailbox, use a modem with up to V.34 (28.8 kbps), and set the parameters as follows: 8, N, 1, ANSI. Alternatively, access it using ISDN (x.75, 64 kbps).

You can reach the SIMATIC Customer Support by telephone at +49 (911) 895-7000 and by fax at +49 (911) 895-7002. Queries can also be addressed to us by Internet mail or by mail to the mailbox specified above.

Contents

Important Information

1	Product	Overview	
2	Installat	ion	
	2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	Configuring an S7-300 Installation Horizontal and Vertical Installation Clearance Measurements Installation dimensions of the Modules Arranging the Modules on a Single Rack Arranging the Modules on Multiple Racks (Not CPU 312 IFM/313)	2-2 2-2 2-3 2-4 2-5 2-6
	2.2 2.2.1 2.2.2 2.2.3	Installation Installing the Rail Installing Modules on the Rail After Installation	2-9 2-9 2-13 2-15
3	Address	sing	
	3.1	Slot-Based Addressing for Modules (Default Addressing)	3-2
	3.2	User-Defined Address Allocation with the CPU 31x-2 DP	3-4
	3.3	Addressing the Signal Modules	3-5
	3.4	Addressing the Integrated Inputs and Outputs of the CPU 312 IFM and CPU 314 IFM	3-8
4	Wiring		
	4.1 4.1.1	Electrical Configuration	4-2
	4.1.2	Programmable Controller Configuring the S7-300 Process I/Os	4-2 4-5
	4.1.3 4.1.4	S7-300 Configuration with Grounded Reference Potential S7-300 Configuration with Ungrounded Reference Potential	4-9
	4.1.5	(Not CPU 312 IFM) S7-300 Configuration with Isolated Modules	4-9 4-11
	4.1.6	Configuration of an S7-300 with Non-Isolated Modules	4-13
	4.1.7	Cable/Wiring Routing Inside Buildings	4-13
	4.1.8	Cable/Wiring Routing Outside Buildings	4-17
	4.1.9	Protecting Digital Output Modules from Inductive Overvoltage	4-17
	4.2	Lightning Protection	4-20
	4.2.1	Lightning Protection Zone Concept	4-21
	4.2.2 4.2.3	Rules for the Transition Between Lightning Protection Zones $0 \leftrightarrow 1$. Rules for the Transitions Between $1 \leftrightarrow 2$ and Greater Lightning Protection	4-23
	7.2.3		4-25
	4.2.4	Sample Circuit for Overvoltage Protection of Networked S7-300s	4-28

	4.3 4.3.1 4.3.2 4.3.3 4.3.4	Wiring Wiring Rules Wiring the Power Supply Module and CPU Wiring the Front Connectors of the Signal Modules Connecting Shielded Cables via a Shield Contact Element	4-30 4-30 4-32 4-35 4-39
5	Networ	king	
	5.1 5.1.1 5.1.2 5.1.3	Configuring a Subnet Prerequisites Rules for Configuring a Subnet Cable Lengths	5-2 5-2 5-5 5-12
t4U.com	5.2 5.2.1 5.2.2 5.2.3 5.2.4	Network Components PROFIBUS Bus Cable Bus Connectors Plugging the Bus Connector into a Module RS 485 Repeater	5-15 5-16 5-17 5-18 5-19
6	Commis	ssioning	
	6.1	Inserting and Changing the Memory Card (Not CPU 312 IFM/314 IFM)	6-3
	6.2	Inserting the Backup Battery/Accumulator (Not CPU 312 IFM)	6-4
	6.3 6.3.1 6.3.2 6.3.3	Connecting a Programming Device Connecting a Programming Device to an S7-300 Connecting the Programming Device to Several Nodes Connecting a Programming Device to Ungrounded Nodes of an MPI Subnet	6-5 6-5 6-6 6-9
	6.4	Switching On a S7-300 for the First Time	6-10
	6.5	Resetting the CPU	6-11
	6.6 6.6.1 6.6.2	Commissioning the PROFIBUS-DP Commissioning the CPU 31x-2 DP as a DP Master Commissioning the CPU 31x-2 DP as a DP Slave	6-16 6-17 6-18
7	Mainter	nance	
	7.1	Changing the Backup/Accumulator (Not CPU 312 IFM)	7-2
	7.2	Replacing Modules	7-5
	7.3	Replacing Fuses on 120/230V AC Digital Output Modules	7-9
8	CPUs		
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6	Control and Display Elements Status and Fault Displays Mode Selector Backup Battery/Accumulator Memory Card MPI and PROFIBUS-DP Interface Clock and Runtime Meter	8-2 8-3 8-4 8-5 8-6 8-7 8-9
	8.2	Communication Options of the CPU	8-11
	8.3 8.3.1	Testing Functions and Diagnostics	8-13 8-13

	8.3.2 8.3.3	Diagnosis with LED Displays Diagnosis with STEP 7	8-15 8-15
	8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 8.4.8	CPUs – Technical Specifications . CPU 312 IFM . CPU 313 . CPU 314 . CPU 314 IFM . CPU 315 . CPU 315-2 DP . CPU 316-2 DP . CPU 318-2 .	8-17 8-18 8-28 8-30 8-32 8-48 8-50 8-53 8-53 8-56
9	CPU 31x	c-2 as DP Master/DP Slave and Direct Communication	
	9.1	DP Address Areas of the CPUs 31x-2	9-2
	9.2	CPU 31x-2 as DP Master	9-3
	9.3	Diagnostics of the CPU 31x-2 as DP Master	9-4
	9.4	CPU 31x-2 as DP Slave	9-10
	9.5 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6 9.5.7 9.5.8 9.5.9 9.5.10	Diagnostics of the CPU 31x-2 as DP Slave Diagnosis with LEDs Diagnosis with STEP 5 or STEP 7 Reading Out the Diagnostic Data Structure of the Slave Diagnostic Data Station Status 1 to 3 Master PROFIBUS Address Manufacturer ID Module Diagnosis Station Diagnosis	9-15 9-16 9-17 9-21 9-22 9-24 9-24 9-25 9-26 9-28
	9.6 9.6.1 9.6.2 9.6.3	Parameter Assignment Frame and Configuration FrameStructure of the Parameter Assignment FrameStructure of the Configuration Frame (S7 Format)Structure of the Configuration Frame for Non-S7 DP Masters	9-29 9-30 9-32 9-34
	9.7	Direct Communication	9-36
	9.8	Diagnostics in Direct Communication	9-37
10	Cycle ar	nd Response Times of the S7-300	
	10.1	Cycle Time	10-2
	10.2	Response Time	10-3
	10.3	Calculation Examples for Cycle Time and Response Time	10-10
	10.4	Interrupt Response Time	10-14
	10.5	Calculation Example for the Interrupt Response Time	10-16
	10.6	Reproducibility of Delay and Watchdog Interrupts	10-16

ww.DataSheet4U.com

.

11	CPU F	unctions Dependent on the CPU and STEP 7 Version	
	11.1	The Differences Between the CPU 318-2 and the CPU 312 IFM to 316-2 DP	11-2
	11.2	The Differences Between the CPUs 312 IFM to 316 and Their Previous Versions	11-4
12	Tips ar	nd Tricks	
Α	Standa	rds, Certificates and Approvals	
В	OBs		
C	Execut	ion Times of the SFCs/SFBs and IEC Functions	
	C.1	SFCs and SFBs	C-2
	C.2	IEC Timers and IEC Counters	C-8
	C.3	IEC Functions	C-8
D	System	n Status List in the CPUs	
Е	Dimen	sioned Drawings	
F	Guideli	ines for Handling Electrostatic Sensitive Devices (ESD)	
	F.1	What is ESD?	F-2
	F.2	Electrostatic Charging of Persons	F-3
	F.3	General Protective Measures against Electrostatic Discharge Damage .	F-4
G	Replac	ement Parts and Accessories for the CPUs of the S7-300	
н	SIMATI	IC S7 Reference Literature	
I	Safety	of Electronic Control Equipment	
J	Siemer	ns Worldwide	
к	List of	Abbreviations	
	Glossa	ıry	

Index

Figures

1-1	Components of an S7-300	1-2
2-1	Horizontal and Vertical Installation of an S7-300	2-2
2-2	Clearance Measurements for an S7-300 Installation	2-3
2-3	Module Arrangement for an S7-300 Programmable Controller	
	Mounted on One Rack	2-5
2-4	Arrangement of Modules in a Four-Rack S7-300 Configuration	2-8
2-5	Fixing Holes of the 2 m/6.56 ft. Rail	2-10
2-6	Connecting the Protective Conductor to the Rail	2-12
2-7	Inserting the Key in the CPU	2-15
2-8	Applying Slot Numbers to the Modules	2-16
3-1	Slots of the S7-300	3-2
3-2	Addresses of the Inputs and Outputs of Digital Modules	3-5
3-3	Addresses of the Inputs and Outputs of the Digital Module in Slot 4	3-6
3-4	Addresses of the Inputs and Outputs of the Analog Module in Slot 4	3-7
4-1	Signal Modules Operated on a Grounded Incoming Supply	4-7
4-2	Signal Modules Powered from the PS 307	4-8
4-3	S7-300 Configuration with Grounded Reference Potential	4-9
4-4	S7-300 Configuration with Ungrounded Reference Potential	4-10
4-5	Potentials in a Configuration with Isolated Modules	4-12
4-6	Potentials in a Configuration with the Non-Isolated SM 334 Analog Input/C	
. –	Module; AI 4/AO 2 \times 8/8Bit	4-13
4-7	Relay Contact for Emergency Stop in the Output Circuit	4-18
4-8	Suppressor Circuit with DC-Operated Coils with	
	Diodes and Zener Diodes	4-18
4-9	Suppressor Circuit with AC-Operated Coils	4-19
4-10	Lightning Protection Zones of a Building	4-22
4-11	Example of the Interconnection of Networked S7-300s	4-29
4-12	Wiring the Power Supply Module and CPU to the Power Connector	4-33
4-13	Setting the Mains Voltage for the PS 307	4-34
4-14	Bringing the Front Connector into the Wiring Position	4-36
4-15	Configuration of Two Signal Modules With Shield Contact Element	4-40
4-16	Attaching Shielded 2-Wire Cables to a Shield Contact Element	4-41
5-1	Terminating Resistor on the Bus Connector Switched On and Off	5-7
5-2	Terminating Resistor on the RS 485 Repeater	5-7
5-3	Connecting Terminating Resistors in an MPI Subnet	5-8
5-4	Example of an MPI Subnet	5-9
5-5	Example of a PROFIBUS Subnet	5-10
5-6	Example of a Configuration with the CPU 315-2 DP in an MPI	F 44
F 7	and PROFIBUS Subnet	5-11
5-7	Maximum Cable Length Between Two RS 485 Repeaters	5-13
5-8	Cable Lengths in an MPI Subnet	5-14
5-9	Bus Connector (6ES7): Terminating Resistor Switched On and Off	5-18
5-10	Removing the Slide on the RS 485 Repeater	5-20
5-11	Lengths of the Stripped Insulation for Connection	F 04
0.4	to the RS 485 Repeater	5-21
6-1	Inserting the Memory Card in the CPU	6-3
6-2	Inserting a Backup Battery in the CPUs 313/314	6-4
6-3	Connecting a Programming Device to an S7-300	6-5
6-4	Connecting a Programming Device to Several S7-300s	6-7
6-5	Connecting a Programming Device to a Subnet	6-8
6-6	Programming Device Connected to an Ungrounded S7-300	6-9

6-7 6-8	Switching Sequence for the Mode Selector for Resetting the CPU Switching Sequence for the Mode Selector for	6-13
	Cold Start (CPU 318-2 Only)	6-14
7-1 7-2	Changing the Backup Battery in the CPU 313/314	7-3
. –	Module from the Rail	7-6
7-3	Removing the Front Connector Coding Key	7-7
7-4	Installing a New Module	7-7
7-5	Plugging In the Front Connector	7-8
7-6	Location of the Fuses on Digital Output Modules	7-10
8-1	Control and Display Elements of the CPUs	8-2
8-2	Status and Fault Displays of the CPUs	8-3
8-3	The Principle of Forcing with S7-300 CPUs	
	(CPU 312 IFM to 316-2 DP)	8-14
8-4	Display of the States of the Interrupt Inputs of the CPU 312 IFM	8-20
8-5	Front View of the CPU 312 IFM	8-21
8-6	Terminal Assignment Diagram of the CPU 312 IFM	8-26
8-7	Basic Circuit Diagram of the CPU 312 IFM	8-27
8-8	Display of the States of the Interrupt Inputs of the CPU 314 IFM	8-34
8-9	Front View of the CPU 314 IFM	8-35
8-10	Terminal Assignment Diagram of the CPU 314 IFM	8-44
8-11	Basic Circuit Diagram of the CPU 314 IFM (Special Inputs and Analog	
	Inputs/Outputs)	8-45
8-12	Basic Circuit Diagram of the CPU 314 IFM (Digital Inputs/Outputs)	8-46
8-13	Wiring the Analog Inputs of the CPU 314 IFM with a 2-Wire Measuring	
	Transducer	8-47
8-14	Wiring the Analog Inputs of the CPU 314 IFM with a 4-Wire Measuring	a 1 -
	Transducer	8-47
9-1	Diagnostics with CPU 315-2 DP < 315-2AF03	9-6
9-2	Diagnostics with CPU 31x-2 (315-2 DP as of 315-2AF03)	9-7
9-3	Diagnostic Addresses for DP Master and DP Slave	9-8
9-4	Intermediate Memory in the CPU 31x-2 as DP Slave	9-11
9-5 0.6	Diagnostic Addresses for DP Master and DP Slave	9-19
9-6 9-7	Structure of the Slave Diagnostic Data	9-21 9-25
9-7 9-8	0	9-25 9-26
9-8 9-9	Structure of the Station Diagnosis Bytes +4 to +7 for Diagnostic and Process Interrupts	9-20 9-27
9-9 9-10	Standardized Portion of the Parameter Assignment Frame (Example)	9-27 9-30
9-10 9-11	Parameters for the CPU 31x-2	9-30 9-31
9-11 9-12	Description of Byte 0 of the CPU's Address Area Identifiers	9-33
9-12 9-13	Description of Byte 1 of the CPU's Address Area Identifiers	9-33
9-14	Direct Communication with CPU 31x-2	9-36
9-15	Diagnostic Address for the Receiver During Direct Communication	9-37
10-1	Component Parts of the Cycle Time	10-2
10-2	Shortest Response Time	10-4
10-3	Longest Response Time	10-5
10-4	Overview of the Bus Runtime on PROFIBUS-DP at	10.0
	1.5 Mbps and 12 Mbps	10-9
11-1	Sample Configuration	11-3
E-1	Dimensioned Drawing of the CPU 312 IFM	E-1
E-2	Dimensioned Drawing of the CPU 313/314/315/315-2 DP/316-2 DP	E-2
E-3	Dimensioned Drawing of the CPU 318-2	E-3

E-4	Dimensioned Drawing of the CPU 314 IFM, Front View	E-3
E-5	Dimensioned Drawing of the CPU 314 IFM, Side View	E-4
F-1	Electrostatic Voltages which can Build up on a Person	F-3

Tables

1-1	Components of an S7-300	1-3
2-1	Installation Dimensions of the S7-300 Modules	2-4
2-2	Connecting Cables for Interface Modules	2-7
2-3	Fixing Holes for Rails	2-11
2-4	Module Accessories	2-13
2-5	Installing the Modules on the Rail	2-14
2-6	Slot Numbers for S7 Modules	2-15
3-1	Start Addresses for the Signal Modules	3-3
3-2	Integrated Inputs and Outputs of the CPU 312 IFM	3-8
3-3	Integrated Inputs and Outputs of the CPU 314 IFM	3-8
4-1	VDE Specifications for Configuring a PLC System	4-5
4-2	Cabling Inside Buildings	4-14
4-3	High-Voltage Protection of Cables Using Surge	
	Protection Components	4-23
4-4	Low-Voltage Protection for Lightning Protection Zone 1 \leftrightarrow 2	4-26
4-5	Low-Voltage Protection for Lightning Protection Zone 2 ↔ 3	4-27
4-6	Example of a Configuration Fulfilling Lightning Protection Requirements	
	(Legend for Figure 4-11)	4-28
4-7	Wiring Rules for the Power Supply and CPU	4-30
4-8	Wiring Rules for Module Front Connectors	4-31
4-9	Wiring the Front Connector	4-37
4-10	Preparing the Signal Module for Operation	4-38
4-11	Assignment of Cable Cross-Sections and Terminal Elements	4-39
5-1	Permissible MPI/PROFIBUS Addresses	5-3
5-2	MPI Addresses of CPs/FMs in an S7-300	
	(with the CPU 312 IFM to 316-2 DP)	5-3
5-3	Permissible Cable Lengths in an MPI Subnet Segment	5-12
5-4	Permissible Cable Lengths in a PROFIBUS subnet Depending on the	
	Transmission Rate	5-12
5-5	Lengths of Spur Lines per Segment	5-14
5-6	Network Components	5-15
5-7	Properties of the PROFIBUS Bus Cable	5-16
5-8	Specifications for Installation of Indoor Bus Cable	5-17
6-1	Possible Reasons for MRES Request by CPU	6-11
6-2	Internal CPU Events on Memory Reset	6-15
8-1	The Differences in Control and Display Elements Between CPUs	8-2
8-2	Using a Backup Battery or Accumulator	8-5
8-3	Memory Cards	8-6
8-4	CPU Interfaces	8-7
8-5	Characteristics of the Clock of the CPUs	8-9
8-6	CPU Communication Options	8-11
8-7	Diagnostic LEDs of the CPU	8-15
8-8	Start Information for OB 40 for the Interrupt Inputs	
	of the Integrated I/Os	8-19
8-9	Start Information for OB 40 for the Interrupt Inputs	
	for the Integrated I/O	8-33

8-10	Characteristic Features of the Integrated Inputs and Outputs of the CPU 314 IFM	8-38
9-1	Meaning of the BUSF LED of the CPU 31x-2 as DP Master	9-4
9-1 9-2	Reading Out the Diagnostic Data with STEP 7	9-4 9-5
9-2 9-3	Event Detection of the CPU 31x-2 as DP Master	9-9
9-3 9-4	Evaluating RUN-STOP Transitions of the DP Slaves	9-9
3-4	in the DP Master	9-9
9-5	Configuration Example for the Address Areas	9-9
3-3	of the Intermediate Memory	9-12
9-6	Meaning of the BUSF LEDs in the CPU 31x-2 as DP Slave	9-12 9-16
9-7	Reading Out the Diagnostic Data with STEP 5 and STEP 7 in the Master	5 10
3-1	System	9-17
9-8	Event Detection of the CPU 31x-2 as DP Slave	9-20
9-9	Evaluating RUN-STOP Transitions in the DP Master/DP Slave	9-20
9-10	Structure of Station Status 1 (Byte 0)	9-22
9-11	Structure of Station Status 2 (Byte 0)	9-23
9-12	Structure of Station Status 3 (Byte 2)	9-23
9-13	Structure of the Master PROFIBUS Address (Byte 3)	9-24
9-14	Structure of the Manufacturer Identification (Bytes 4 and 5)	9-24
9-15	Structure of the Configuration Frame	9-32
9-16	Identifiers for the Address Areas of the Intermediate Memory	9-33
9-17	Structure of the Configuration Frame for Non-S7 DP Masters	9-35
9-18	Event Detection of the CPU 31x-2 as Receiver	0.00
0 10	During Direct Communication	9-37
9-19	Evaluation of the Station Failure of the Sender	0.01
0.0	During Direct Communication	9-38
10-1	Operating System Processing Times of the CPUs	10-6
10-2	Process Image Update of CPUs	10-7
10-3	CPU-specific Factors for the User Program Processing Time	10-7
10-4	Updating the S7 Timers	10-7
10-5	Update Time and SFB Runtimes	10-8
10-6	Extending the Cycle by Nesting Interrupts	10-10
10-7	Process Interrupt Response Times of the CPUs	10-14
10-8	Diagnostic Interrupt Response Times of the CPUs	10-15
10-9	Reproducibility of the Delay and Watchdog Interrupts of the CPUs	10-17
D-1	Sublists of the System Status List of the CPUs	D-1
D-2	Sublists of the System Status List of the	
	CPU 315-2 DP as DP Master	D-4
G-1	Accessories and Replacement Parts	G-1
H-1	Manuals for Configuring and Programming the S7-300	H-1
H-2	Manuals for PROFIBUS-DP	H-3
H-3	List of Books You Can Order	H-4

Product Overview

Modular Design

www.DataSheet4U.com

The S7-300 has a modular design. You can set up your own individual system by combining components from a comprehensive range of S7-300 modules.

The range of modules includes the following components:

- CPUs for various performance ranges
- Signal modules for digital and analog input/output (see *Module Specifications* Reference Manual)
- Function modules for technological functions (see the function module manual for a description).
- CP communication processors (see the communication processor manual for a description)
- Load power supply modules for connecting the S7-300 to 120/230V AC power supplies (see *Module Specifications* Reference Manual)
- Interface modules for the interconnection of racks in multi-rack installations (see *Module Specifications* Reference Manual)

All of the S7-300 modules are contained in housings protected to IP 20, i.e. they are encapsulated and can be operated without a fan.

In This Chapter

In this chapter, we will introduce you to the most important components that go to make up an S7-300.

Structure of an S7-300

An S7-300 programmable controller is made up of the following components:

- Power supply (PS)
- CPU
- Signal modules (SM)
- Function modules (FM)
- Communication processor (CP).

Several S7-300s can communicate together and with other SIMATIC S7 PLCs via PROFIBUS bus cables.

You require a programming device (PG) to program the S7-300. You hook the programming device up to the S7-300 with a special programming device cable.

Figure 1-1 shows a possible configuration with two S7-300 programmable controllers. The components in the shaded area are described in this manual.

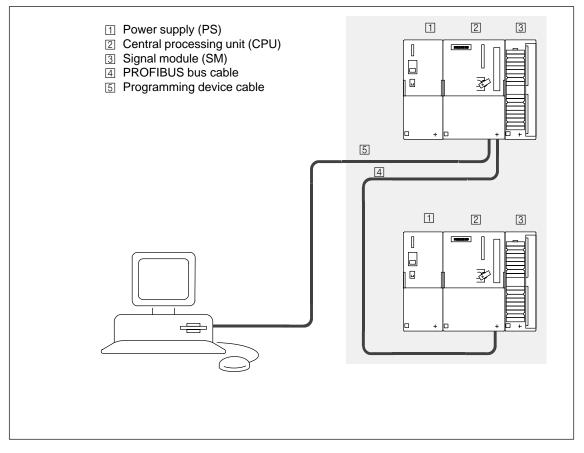


Figure 1-1 Components of an S7-300

Components of an S7-300

You have a number of components at your disposal for installing and starting up an S7-300 programmable controller. Table 1-1 lists the major components and their functions:

Table 1-1	Components of an S7-300

Components	Function	Illustration
Rail Accessory: Shield contact element	accommodates the S7-300 modules	
Power supply (PS)	converts the power system voltage (120/230V AC) into 24V DC for the S7-300 and load power supply for 24V DC load circuits	
 CPU Accessory: CPU 313/314/315/315-2 DP/ 316-2 DP/318-2 Memory card Backup battery (or accumulator for real-time clock) except for CPU 313) CPU 314 IFM Backup battery (or accumulator for real-time clock) Front connector CPU 312 IFM Front connector 	 executes the user program; supplies the S7-300 backplane bus with 5 V; communicates with other nodes in an MPI network via the MPI interface. You can also use the CPU 31x-2 DP/318-2 in a PROFIBUS subnet: as a DP master as a DP slave on an S7/M7 DP master or another DP master. 	
Signal modules (SM) (digital input modules, digital output modules, digital input/output modules) analog input module analog output module analog input/output modules) Accessory: Front connector	match different process signal levels to the S7-300	

Components	Function	Illustration
Function modules (FM) Accessories: Front connector	for time-critical and memory- intensive process signal processing tasks, for example, positioning or closed-loop control	
Communication processor (CP). Accessory: Connecting cable	relieves the CPU of communication tasks, for example, CP 342-5 DP for connection to PROFIBUS-DP.	
SIMATIC TOP connect Accessories: Front connector module with ribbon cable connection	for wiring of the digital modules	
Interface module (IM) Accessories: Connecting cables	interconnects the individual tiers of an S7-300	
PROFIBUS bus cable with bus connector	interconnects stations on an MPI or PROFIBUS subnet	
Programming device cable	connects a CPU to a programming device/PC	
RS 485 repeaters	for amplifying the signals in an MPI or PROFIBUS subnet and for connecting segments in these systems	
Programming device (PG) or PC with the STEP 7 software package	configures, initializes, programs and tests the S7-300	

Table 1-1Components of an S7-300, continued

2

Installation

Introduction

ww.DataSheet4U.com

In this chapter we will show you how to carry out the mechanical configuration, and prepare and install the S7-300 components.

To set up a S7-300, you must take into account the configuration of the electrical setup. Make sure you also read Chapter 3, "Wiring".

Contents

Section	Contents	Page
2.1	Configuration of an S7-300 Setup	2-2
2.2	Installation	2-9

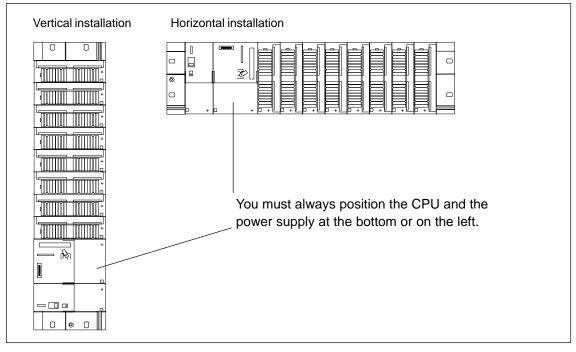
Open Modules

The modules of an S7-300 are open components. That means you can only install the S7-300 in housings, cabinets or electrical operating areas that are only accessible by key or a special tool. Only trained or authorized personnel should have access to the housings, cabinets or electrical operating areas.

2.1 Configuring an S7-300 Installation

Section	Contents	Page
2.1.1	Horizontal and Vertical Installation	2-2
2.1.2	Clearance Measurements	2-3
2.1.3	Installation Dimensions of the Modules	2-4
2.1.4	Arranging the Modules on a Single Rack	2-5
2.1.5	Arranging the Modules on Multiple Racks (Not CPU 312 IFM/313)	2-6

ww.DataSheet4U.com


2.1.1 Horizontal and Vertical Installation

Installation

You can install your S7-300 in either a horizontal or vertical position.

Permissible Ambient Temperature

- Horizontal installation from 0 to 60 °C
- Vertical installation from 0 to 40 °C

2.1.2 Clearance Measurements

Rules

If you adhere to the minimum clearance measurements:

- You will ensure that the S7-300 modules do not get too hot.
- You will have adequate space for inserting and removing the S7-300 modules.
- You will have sufficient space for running cables.
- The height of the S7-300 mounting rack increases to 185 mm. Despite this, you must maintain a clearance of 40 mm (1.56 in.).

Note

If you use a shield contact element (see Section 4.3.4), the dimension specifications apply from the lower edge of the shield contact element.

Clearance Measurements

Figure 2-2 shows the necessary clearances between the individual racks and to the adjacent equipment, cable ducts, cabinet walls etc. for standard S7-300 configurations on several racks.

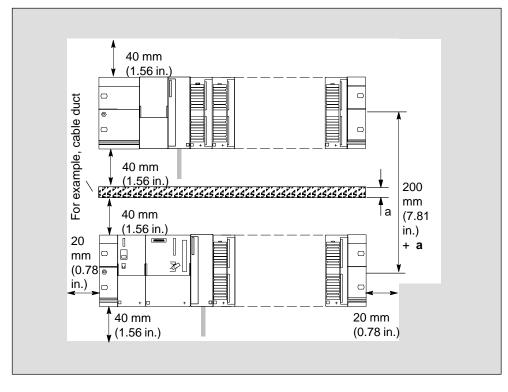


Figure 2-2 Clearance Measurements for an S7-300 Installation

www.DataSheet4U.com

2.1.3 Installation dimensions of the Modules

Table 2-1 shows the installation dimensions of the S7-300 modules.

Modules	Module Width	Module Height	Max. Installa- tion Depth
Power supply PS 307, 2 A	50 mm (1.95 in.)		
Power supply PS 307, 5 A	80 mm (3.12 in.)		
Power supply PS 307, 10 A	200 mm (7.8 in)		
CPU 31x/312 IFM,	80 mm (3.12 in.)		
CPU 314 IFM/CPU 318-2	160 mm (6.24 in.)		130 mm or
Digital input module SM 321	40 mm (1.56 in.)	125 mm,	180 mm (7.02 in.) with
Digital output module SM 322		185 mm	front cover of
Relay output module SM 322		with shield	CPU and IM
Digital input/output module SM 323 Simulator module SM 374		contact element	361 open (195 mm
Analog input module SM 331	40 mm (1.56 in.)	-	(8.00 in.) for CPU 312
Analog output module SM 332 Analog input/output module SM 334			IFM)
Interface module IM 360	40 mm (1.56 in.)		
Interface module IM 361	80 mm		
Interface module IM 365	(3.12 in.) 40 mm		
	(1.56 in.)		

Table 2-1 Installation Dimensions of the S7-300 Modules

Rail Length

Depending on your S7-300 configuration, you can use rails of the following lengths:

Rail	Usable Lengths for Modules	Remarks
160 mm (6.24 in.)	120 mm (4.68 in.)	Comes with fixing holes
482.6 mm (18.82 in.)	450 mm (17.55 in.)	
530 mm (20.67 in.)	480 mm (18.72 in.)	
830 mm (32.37 in.)	780 mm (30.42 in.)	
2000 mm (1.56 in.)	Cut to length required	Fixing holes must be drilled

2.1.4 Arranging the Modules on a Single Rack

Rules

The following rules apply to the arrangement of the modules on a single rack:

- No more than eight modules(SM, FM, CP) may be installed to the right of the CPU.
- The number of modules (SM, FM, CP) that can be plugged in is limited by the amount of power they draw from the S7-300's backplane bus (see the table containing the technical specifications of the various modules).

The power input from the S7-300 backplane bus to all the modules installed on a mounting rack must not exceed the following:

—	For the CPUs 313/314/314 IFM/315/315-2 DP/	
	316-2 DP/318-2	1.2 A
_	For the CPU 312 IFM	0.8 A

Figure 2-3 shows the arrangement of the modules in an S7-300 configuration with 8 signal modules.

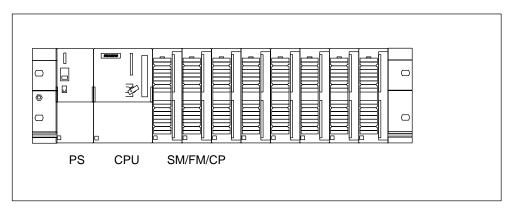


Figure 2-3 Module Arrangement for an S7-300 Programmable Controller Mounted on One Rack

2.1.5 Arranging the Modules on Multiple Racks (Not CPU 312 IFM/313)

Exception

The CPU 312 IFM and CPU 313 can only be used for a configuration on **one** rack.

Rules

vw.DataSheet4U.com

The following rules apply to the arrangement of modules on more than one rack:

- The interface module is always be installed in slot 3, to the left of the first signal module.
- No more than 8 modules (SM, FM, CP) are permitted per rack. These modules are always located to the right of the interface modules.
 Exception: In the case of the CPU 314 IFM, a module cannot be inserted in slot 11 on rack 3 (see Chapter 3).
- The number of modules (SM, FM, CP) that can be installed is limited by the maximum permissible current that can be drawn from the S7-300 backplane bus. The power consumption must not exceed 1.2 A per line (see technical specifications of the modules).

Prerequisite: Interface modules

Interface modules that relay the S7-300 backplane bus from one rack to the next are required in multi-rack configurations. The CPU is always located on rack 0.

Interface Module	To Be Used for	Order No.	
IM 360	Rack 0	6ES7 360-3AA01-0AA0	
IM 361	Rack 1 to 3	6ES7 361-3CA01-0AA0	
	Two-Line Configuration Only		
IM 365 S	Rack 0	6ES7 365-0BA00-0AA0	
IM 365 R	Rack 1		

Connecting Cables for the IM 360/361 Interface Module

The following connecting cables are available for the interface modules:

Table 2-2 Connecting Cables for Interface Modules

Length	Order No. of the Connecting Cable
1 m	6ES7 368-3BB01-0AA0
2.5 m (8.2 ft.)	6ES7 368-3BC51-0AA0
5 m	6ES7 368-3BF01-0AA0
10 m	6ES7 368-3CB01-0AA0

ww.DataSheet4U.com

IM 365 Interface Module

The S7-300 offers the IM 365 interface module for a configuration on 2 racks. The two IM 365 interface modules are connected by a 1 m long cable (fixed wiring).

If you use the IM 365 interface modules, you can use only signal modules on rack 1.

The total current drawn by the inserted signal modules from both mounting racks must not exceed 1.2 A; the current drawn by mounting rack 1 is limited to 800 mA.

Maximum Configuration of an Installation

Figure 2-4 shows the module arrangement in an S7-300 configuration on 4 mounting racks (not CPU 312 IFM/313).

Figure 2-4 Arrangement of Modules in a Four-Rack S7-300 Configuration

2.2 Installation

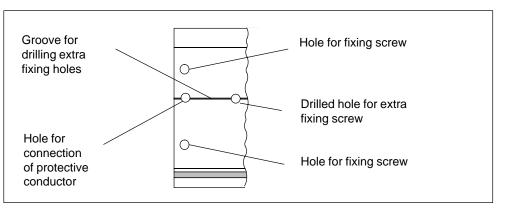
Section	Contents	Page
2.2.1	Installing the Rail	2-9
2.2.2	Installing Modules on the Rail	2-13
2.2.3	After Installation	2-15

www.DataSheet4U.com

2.2.1 Installing the Rail

Are you Installing a 2-Meter Rail?

If not, you can skip this section and read on from the section entitled **Dimensioned Drawing for Fixing Holes**.

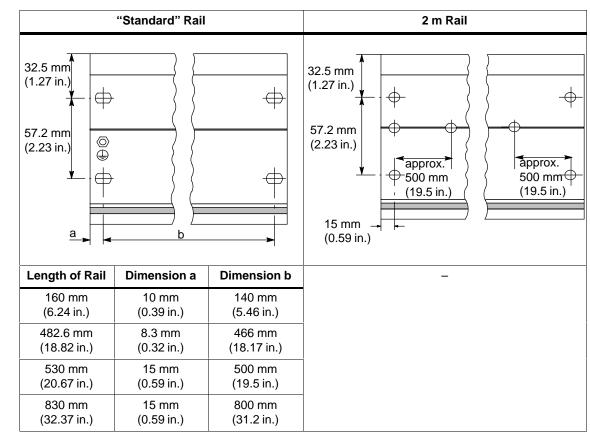

If so, the 2-meter rail has to be prepared for installation. Proceed as follows:

- 1. Shorten the rail to the required length.
- 2. Mark out:
 - Four holes for the fixing screws (dimensions: see Table 2-3)
 - A hole to take the fixing screw for the protective conductor.
- 3. Is the rail longer than 830 mm/32.37 in.?

If so: You must make additional holes for more fixing screws to ensure the rail is secure. Mark out these holes along the groove in the middle section of the rail (see Figure 2-5). These additional holes should be at 500 mm (19.5 in) intervals.

If not: No further steps must be taken.

4. Drill the marked holes to a diameter of $6.5^{+0.2}$ mm for M6 screws.



5. Tighten the M6 screw to fix the protective conductor.

Figure 2-5 Fixing Holes of the 2 m/6.56 ft. Rail

Dimensioned Drawing for Fixing Holes

The fixing-hole dimensions for the rail are shown in Table 2-3.

Table 2-3 Fixing Holes for Rails

Fixing Screws

You have a choice of the following screw types for fixing the rail.

for	Type of Screw	Description
Lateral fixing screws	M6 cheese-head screw M6 to ISO 1207/ ISO 1580 (DIN 84/DIN 85)	Choose a suitable screw length to for your configuration. You will also require 6,4 wash-
	M6 hexagon-head screw to ISO 4017 (DIN 4017)	ers to ISO 7092 (DIN 433)
Extra fixing screw (only for 2 m rail)	M6 cheese-head screw to ISO 1207/ ISO 1580 (DIN 84/DIN 85)	

Installing the Rail

To install rails, proceed as follows:

- 1. Choose a position for the rail that leaves enough room to install it properly and enough space to cope with the temperature rise of the modules (leave at least 40 mm /1.56 in. free above and below the rail; see page 2-3).
- 2. Screw the rail to its base (size: M6). Is this base a metallic plate or a grounded supporting plate?

If so: Make sure there is a low-impedance connection between the rail and the base. In the case of painted or anodized metals, for instance, use a suitable contacting agent or contact washers.

If not: No particular steps are required.

3. Connect the rail to the protective conductor. An M6 screw is provided for this purpose on the rail.

Minimum cross-section from the conductor to the protective conductor: 10 mm².

Note

Make absolutely sure that your connection to the protective conductor is low-impedance (see Figure 2-6). If the S7-300 is mounted on a hinged rail, you must use a flexible cable to establish the connection to the protective conductor.

Protective Conductor Connection

Figure 2-6 shows you how to connect the protective conductor to the rail.

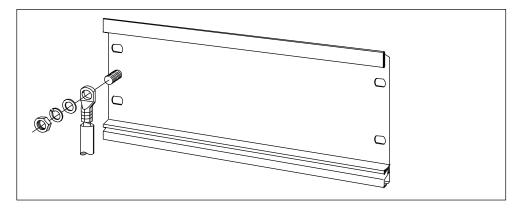


Figure 2-6 Connecting the Protective Conductor to the Rail

vw DataSheet4U com

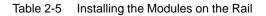
2.2.2 Installing Modules on the Rail

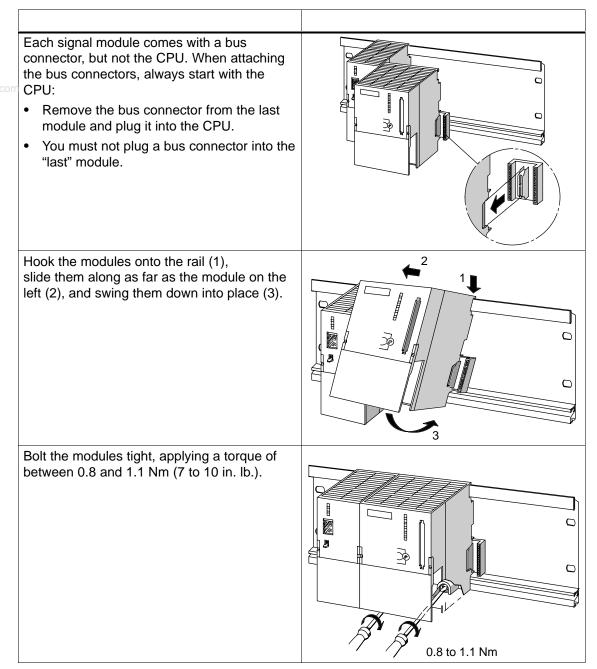
Accessories

The accessories you need for installation are included with the modules. Appendix G contains a list of accessories and spare parts with the corresponding order numbers.

ww.DataSheet4U.com

Module	Accessories Included	Description
CPU	$1 \times slot$ number label	For assigning slot numbers
	2 keys	The key is used for actuating the CPU's mode selector
	Labeling strip (CPU 312 IFM/314 IFM only)	For labeling the integrated input and output points of the CPU
Signal module (SM)	1 bus connector	For establishing the electrical connections between the mo- dules
	1 labeling strip	For labeling the input and output points on the module
Interface mo- dule (IM)	1 × slot number label (IM 361 and IM 365 only)	For assigning slot numbers on racks 1 to 3


Sequence for Installing the Modules on the Rail


- 1. Power supply module
- 2. CPU
- 3. Signal module(s)

Note: If you are installing SM 331 analog input modules, please check **before** installation whether you have to move the measuring range submodules on the side of the module. (see Chapter 4 on analog modules in the *Module Specifications* Reference Manual).

Sequence for Installation

The individual steps to be followed when installing the modules are described below.

2.2.3 After Installation

Inserting the Key

After installing the CPU on the rail, you can insert the key into the CPU in the STOP or RUN switch position.

Figure 2-7 Inserting the Key in the CPU

Assigning Slot Numbers

After installation you can assign a slot number to each module. This makes it easier to assign the modules in the configuration table in *STEP 7*. Table 2-6 shows the slot number assignment.

Table 2-6 Slot Numbers for S7 Modules

Slot Number	Module	Remarks
1	Power supply (PS)	-
2	CPU	-
3	Interface module (IM)	To the right of the CPU
4	1st signal module	To the right of the CPU or IM
5	2nd signal module	-
6	3rd signal module	-
7	4th signal module	-
8	5th signal module	-
9	6th signal module	-
10	7th signal module	-
11	8th signal module	_

Applying Slot Numbers

Figure 2-8 shows you how to apply the slot numbers. The slot number labels are included with the CPU.

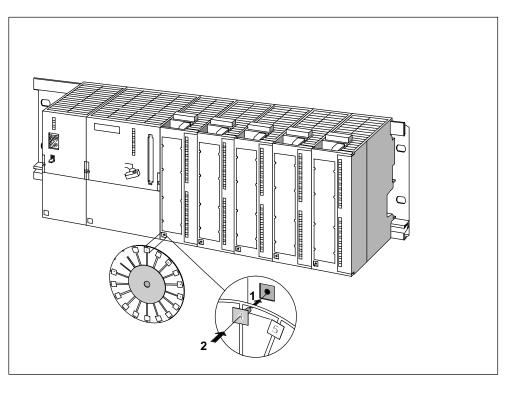


Figure 2-8 Applying Slot Numbers to the Modules

3

Addressing

In This Chapter

ww.DataSheet4U.com

In this chapter, you will learn about the different ways of addressing the individual channels of the signal modules.

Slot-Based Address Allocation

Slot-based address allocation is the default addressing method on the *S7*, i.e. a defined module start address is allocated to each slot number.

User-Defined Address Allocation

In user-defined address allocation, you can allocate any address within the available CPU address area to any module. User-oriented address allocation on the S7-300 is only possible with the CPU 315-2 DP.

In This Chapter

Section	Contents	Page
3.1	Slot-Based Address Allocation for Modules (Default Addresses)	3-2
3.2	User-Defined Address Allocation with CPU 31x-2 DP	3-4
3.3	Addressing the Signal Modules	3-5
3.4	Addressing the Integrated Inputs and Outputs of the CPU 312 IFM und CPU 314 IFM	3-8

3.1 Slot-Based Addressing for Modules (Default Addressing)

Introduction

In slot-based addressing (default addressing), a module start address is allocated to each slot number (see Table 3-1). This section shows you which module start address is allocated to which slot number. You need this information to determine the module start addresses on the installed modules.

^mMaximum Configuration

Figure 3-1 shows a configuration of the S7-300 on four racks and all of the available module slots. Please note that with the CPUs 312 IFM and 313, only one configuration is possible on rack 0.

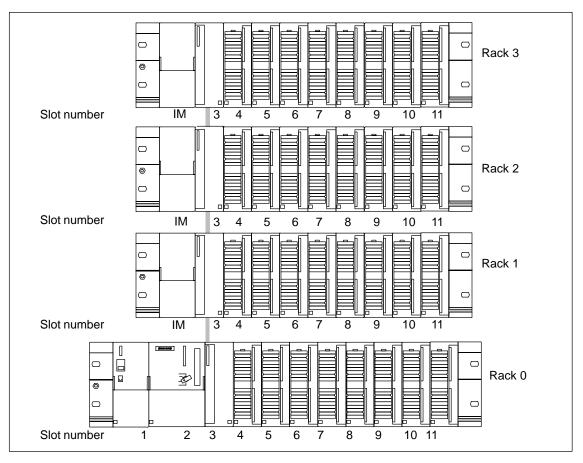


Figure 3-1 Slots of the S7-300

Module Start Addresses

Table 3-1 shows the allocation of the module start addresses to the slot numbers and racks.

The input and output addresses for I/O modules start from the same module start address.

Note

/ww.DataSheet4U.com

In the case of the CPU 314 IFM, a module cannot be plugged into slot 11 on rack 3. The address space is occupied by the integrated inputs and outputs.

Rack	Module	Slot Number													
	Start Addresses		2	3	4	5	6	7	8	9	10	11			
0	Digital	De	CDU	IM	0	4	8	12	16	20	24	28			
0	Analog	PS	CPU	CPU	PS CPU	PS CPU	IIVI	256	272	288	304	320	336	352	368
1 ¹	Digital	-	_	IM	32	36	40	44	48	52	56	60			
1.	Analog	-	-		384	400	416	432	448	464	480	496			
2 ¹	Digital	-	_	IM	64	68	72	76	80	84	88	92			
Ζ.	Analog	-	-		512	528	544	560	576	592	608	624			
3 ¹	Digital	-	_	IM	96	100	104	108	112	116	120	124 ²			
3'	Analog	-	_		640	656	672	688	704	720	736	752 ²			

Table 3-1 Start Addresses for the Signal Modules
--

1 Not with the CPU 312 IFM/313

2 Not with the CPU 314 IFM

3.2 User-Defined Address Allocation with the CPU 31x-2 DP

Only the 315-2 DP, 316-2 DP and 318-2 CPUs

... support user-defined address allocation.

User-Defined Address Allocation

ww.DataSheet4U.com

User-defined address allocation means that you are free to allocate any module (SM/FM/CP) an address of your choice. The addresses are allocated in *STEP 7*. You define the start address of the module, and all other addresses of this module are based on this start address.

Advantages

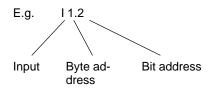
Advantages of user-defined address allocation:

- Optimum utilization of the address areas available, since between the modules, address "gaps" will not occur.
- When generating standard software, you can program addresses which are independent of the S7-300 configuration.

Addresses of the Distributed I/Os

To address the distributed I/Os of the CPUs 31x-2 DP, please read Section 9.1.

3.3 Addressing the Signal Modules


Introduction

This section shows you how signal modules are addressed. You need this information in order to be able to address the channels of the signal modules in your user program.

Addresses of the Digital Modules

ww.DataSheet4U.com

The address of an input or output of a digital module consists of a byte address and a bit address.

The byte address depends on the module start address.

The bit address is the number printed on the module.

Figure 3-2 shows you how the addresses of the individual channels of a digital module are obtained.

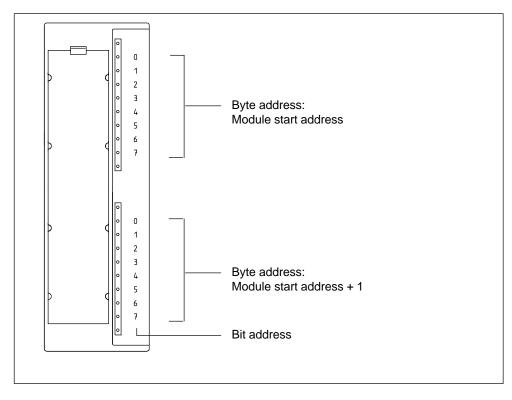


Figure 3-2 Addresses of the Inputs and Outputs of Digital Modules

An Example for Digital Modules

The example in Figure 3-3 shows which default addresses are obtained if a digital module is plugged into slot 4 (i.e. when the module start address is 0).

Slot number 3 has not been assigned since there is no interface module in the example.

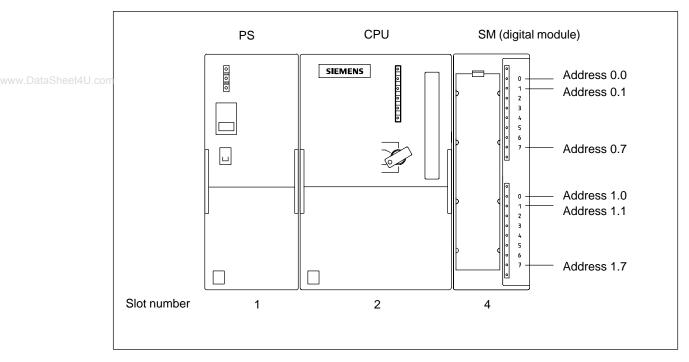


Figure 3-3 Addresses of the Inputs and Outputs of the Digital Module in Slot 4

Addresses of the Analog Modules

The address of an analog input or output channel is always a word address.

The channel address depends on the module start address.

If the first analog module is plugged into slot 4, it has the default start address 256. The start address of each further analog module increases by 16 per slot (see Table 3-1).

An analog input/output module has the same start addresses for its input and output channels.

An Example for Analog Modules

The example in Figure 3-4 shows you which default channel addresses are obtained for an analog module plugged into slot 4. As you can see, the input and output channels of an analog input/output module are addressed as of the same address (the module start address).

Slot number 3 has not been assigned since there is no interface module in the example.

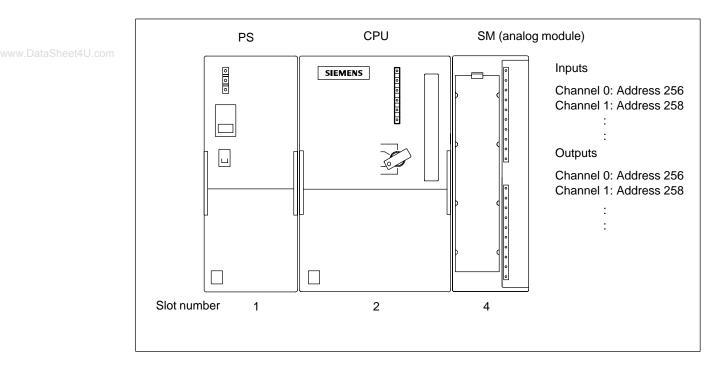


Figure 3-4 Addresses of the Inputs and Outputs of the Analog Module in Slot 4

3.4 Addressing the Integrated Inputs and Outputs of the CPU 312 IFM and CPU 314 IFM

CPU 312 IFM

The integrated inputs and outputs of the CPU 312 IFM have the following addresses:

/111	Inputs/Outputs	Addresses	Remarks
	10 digital inputs	124.0 to 125.1	
		Of these, 4 are special channels: 124.6 to 125.1	You can assign these special channels the counter and frequency functions (see the <i>Integrated Functions</i>) manual), or you can use them as interrupt inputs.
	6 digital outputs	124.0 to 124.5	_

CPU 314 IFM

The integrated inputs and outputs of the CPU 314 IFM have the following addresses:

Table 3-3 Integrated Inputs and Outputs of the CPU 314 IFM

Inputs/Outputs	Addresses	Remarks
20 digital inputs	124.0 to 126.3	
	Of these, 4 are special channels: 126.0 to 126.3	You can assign these special channels the functions "Counter", "Frequency meter", "Counter A/B" or "Positioning" (see the <i>Integrated Functions</i>) manual), or you can use them as interrupt inputs.
16 digital outputs	124.0 to 125.7	-
4 analog inputs	128 to 135	-
1 analog output	128 to 129	-

4

Wiring

Introduction

ww.DataSheet4U.com

In this chapter we will show you how to configure the electrical installation and how to wire an S7-300.

To configure an S7-300 you must take into account the mechanical configuration. Make sure you also read Section 2.1.

Basic Rules

In view of the many and varied applications an S7-300, this chapter can only describe a few basic rules on its electrical configuration. You must observe at least these basic rules if you want your S7-300 to operate faultlessly and satisfactorily.

Contents

Section	Contents	Page
4.1	Electrical Configuration	4-2
4.2	Lightning and Overvoltage Protection	4-20
4.3	Wiring	4-30

4.1 Electrical Configuration

	+1	
	6614	

Section	Contents	Page
4.1.1	General Rules and Guidelines for Operating an S7-300 Programmable Controller	4-2
4.1.2	Configuring the S7-300 Process Peripherals	4-5
4.1.3	S7-300 Configuration with Grounded Reference Potential	4-9
4.1.4	S7-300 Configuration with Ungrounded Reference Potential (not CPU 312 IFM)	4-9
4.1.5	S7-300 Configuration with Isolated Modules	4-11
4.1.6	Configuration of an S7-300 with Non-Isolated Modules	4-13
4.1.7	Cabling Inside Buildings	4-13
4.1.8	Cabling Outside Buildings	4-17
4.1.9	Protecting Digital Output Modules Against Inductive Overvoltage	4-17

4.1.1 General Rules and Guidelines for Operating an S7-300 Programmable Controller

As part of a plant or system, and depending on its particular area of application, the S7-300 programmable controller requires that you observe a number of specific rules and guidelines.

Observe the safety and accident prevention regulations applying to particular applications or situations, for example the relevant machine protection guidelines.

This section outlines the most important rules you must observe when integrating your S7-300 in an existing plant or system.

Emergency Stop Systems

Emergency stop systems to IEC 204 (corresponds to VDE 113) must remain effective in all operating modes of the plant or system.

Starting Up a Plant Again Following Specific Events

The following table shows you what you have to observe when starting up a plant again following certain events.

If There Is	What Must Not Happen
A restart following a voltage dip or power failure	No dangerous operating states may occur. If necessary, force an emergency stop.
A restart following resetting of the emergency stop system	An uncontrolled or undefined start-up must be avoided.

ww.DataSheet4U.com

Mains Voltage

The following table shows you what to watch with respect to the mains voltage.

In the Case of	The Following Must Apply
Permanently installed plants or systems wi- thout all-pole mains disconnect switches	There must be a mains disconnect switch or a fuse in the building installation system
Load power supplies, power supply modu- les	The system voltage range set must corres- pond to the local system voltage
All circuits of the S7-300	Any fluctuations in, or deviations from, the rated mains voltage must be within the per- missible tolerances (see the technical speci- fications of the S7-300 modules)

24V DC Power Supply

The following table shows you what you must observe in connection with the 24V DC power supply.

Function	Measures to Take		
Buildings	External lightning protection	Install lightning pro- tection	
24V DC power supply cables, signal cables	Internal lightning protection	(e.g. lightning conductors).	
24 V power supply	Safe (electrical) extra-low voltage isolation		

Protection Against the Effects of External Electrical Interference

The following table will show you what you must do to protect your programmable controller against electrical interference or faults.

Function	Make Sure That
All plants and systems in which the S7-300 is installed	A protective conductor is connected to the plant or system to divert electromagnetic interference.
Supply, signal and bus cables	The conductor routing and installation is correct. (see Section 4.1.7 and 4.1.8)
Signal and bus cables	A cable break or conductor break cannot result in undefined plant or system states.

ww.DataSheet4U.com

Rules Relating to S7-300 Power Consumption and Power Loss

The S7-300 modules draw the power they need from the backplane bus and, if required, from an external load power supply.

- The power consumption of all the signal modules from the backplane bus must **not** exceed the current the CPU can deliver to the backplane bus.
- The PS 307 power supply is dependent on the power consumption from the 24V load power supply; this is made up of the total power consumption of the signal modules and all other connected loads.
- The power loss of **all** the components in a cabinet must not exceed the maximum thermal rating of the cabinet.

Tip: When establishing the required dimensions of the cabinet, ensure that the temperature inside the cabinet does not exceed the permissible 60 °C even where external temperatures are high.

You will find the values for the power consumption and power loss of a module under the technical specifications of the relevant modules.

4.1.2 Configuring the S7-300 Process I/Os

This section contains information concerning the overall configuration of an S7-300 system with a grounded incoming supply (TN-S system). The following aspects are covered:

- Circuit-breaking devices, short-circuit and overload protection to VDE 0100 and VDE 0113
- Load power supplies and load circuits

Definition: Grounded Supply

In a grounded incoming supply system, the neutral is grounded. A single fault to ground or a grounded part of the plant causes the protective devices to trip.

Components and Protective Measures

A number of components and protective measures are prescribed for a plant. The type of components and the degree of compulsion pertaining to the protective measures will depend on the VDE specification applicable to your particular plant. The following table refers to Figure 4-1 on page 4-5.

Compare	Refer to Figure 4-1	VDE 0100	VDE 0113
Disconnecting devices for control systems, sensors and actuators	1	Part 460: Main switch	Part 1: Disconnector
Short-circuit and over- load protection: In groups for sensors and actuators	[2]	Part 725: Single-pole fu- sing of circuits	 Part 1: In the case of a grounded secondary circuit: provide single-pole protection Otherwise: provide all-pole protection
Load power supply for AC load circuits with more than five electro- magnetic devices	3	Galvanic isolation by transformer recommended	Galvanic isolation by transformer mandatory

T I I A A	
Table 4-1	VDE Specifications for Configuring a PLC System

Features of Load Power Supplies

The load power supply feeds input and output circuits (load circuits), as well as sensors and actuators. The characteristic features of load power supplies required in specific applications are listed in the following table.

Characteristics of the Load Power Supply	Mandatory for	Remarks
Protective separa- tion	Modules that have to be supplied with \leq 60V DC or \leq 25V AC	The PS 307 power supplies and the Sie- mens load power supplies of the 6EP1 series have these characteristics
	24V DC load circuits	
Output voltage tole- rances: 20.4 V to 28.8 V	24V DC load circuits	If the output voltage tolerances are exceeded, we recommend you fit a back- up capacitor Rating: 200 μ F per 1A load
40.8 V to 57.6 V	48V DC load circuits	current (in the case of full-wave rectifica- tion).
51 V to 72 V	60V DC load circuits	

w.DataSheet4U.com

Rule: Ground Load Circuits

Load circuits should be grounded.

The common reference potential (ground) guarantees full functionality. Provide a detachable connection to the protective conductor on the load power supply (terminal L- or M) or on the isolating transformer (Figure 4-1, \square). In the event of power distribution faults, this makes it easier to localize ground faults.

S7-300 Grounding Concept

In the S7-300 grounding concept, a distinction is drawn between the CPU 312 IFM and the other CPUs.

- **CPU 312 IFM**: With the CPU 312 IFM, you can only implement a grounded configuration. The functional ground is connected to the chassis ground internally in CPU 312 IFM (see Section 8.4.1).
- CPU 313/314/314 IFM/315/315-2 DP/316-2 DP/318-2: If you use the S7-300 with one of these CPUs on a grounded supply, you should also ground the reference potential of the S7-300. The reference potential is grounded if the connection between the M terminal and the functional ground terminal on the CPUs is in place (factory setting of the CPU).

S7-300 in the Overall Configuration

Figure 4-1 shows the S7-300 in the overall configuration (load power supply and grounding concept) supplied from a TN-S system.

Note: The arrangement of the power supply connections shown does not reflect the actual physical arrangement; this has been done to improve clarity.

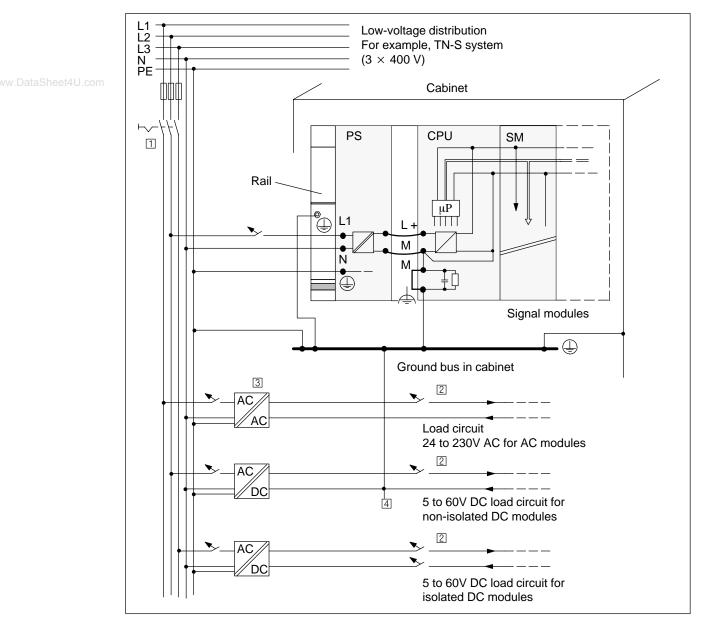


Figure 4-1 Signal Modules Operated on a Grounded Incoming Supply

S7-300 with Load Power Supply from the PS 307

Figure 4-2 shows the S7-300 in the overall configuration (load power supply and grounding concept) in a TN-S power system environment.

Apart from powering the CPU, the PS 307 also supplies the load current for the 24V DC modules.

Note: The arrangement of the power supply connections does not reflect the actual physical arrangement; this has been done to improve clarity.

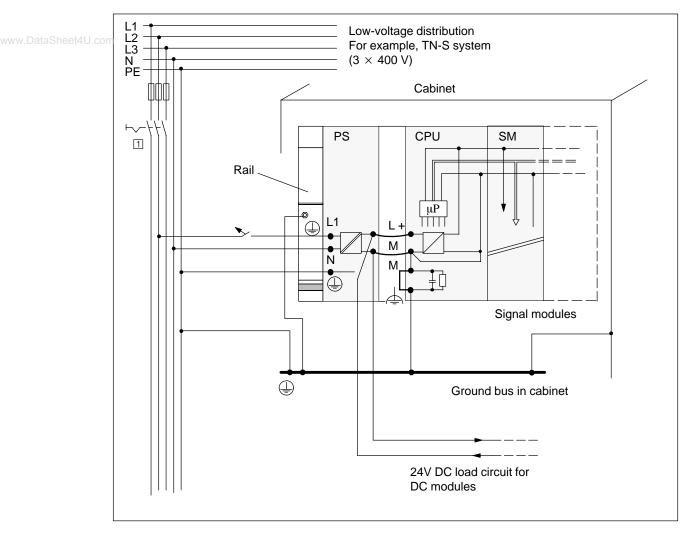


Figure 4-2 Signal Modules Powered from the PS 307

4.1.3 S7-300 Configuration with Grounded Reference Potential

If you install the S7-300 with grounded reference potential, interference currents that might occur are discharged to the protective conductor.

- In the case of CPUs 313/314/314 IFM/315/315-2 DP/316-2DP/318-2, via a jumper inserted between terminal M and functional ground (see Figure 4-3)
- In the case of the CPU 312 IFM, these terminals are connected internally (see Section 8.4.1).

et4U.com Terminal Connection Model

Figure 4-3 shows the configuration of an S7-300 with CPU 313/314/314 IFM/315/ 315-2 DP/316-2 DP/318-2 with grounded reference potential. If you want to ground the reference potential, you **must not** remove the jumper on the CPU between the M terminal and functional ground.

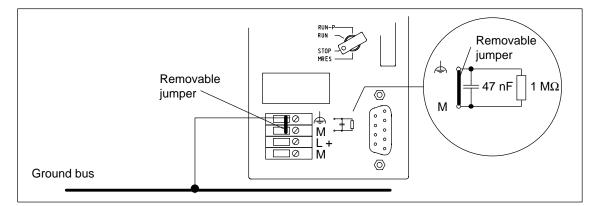


Figure 4-3 S7-300 Configuration with Grounded Reference Potential

4.1.4 S7-300 Configuration with Ungrounded Reference Potential (Not CPU 312 IFM)

If you install the S7-300 with ungrounded reference potential, any interference current is discharged to the protective conductor via an RC network integrated in CPUs 313/314/314 IFM/315/315-2 DP/ 316-2 DP/318-2 (see Figure 4-4).

Application

In plants covering large areas, it may be necessary to configure the S7-300 with ungrounded reference potential for ground fault monitoring purposes, for example. This is the case, for example, in the chemical industry and in power stations.

Terminal Connection Model

Figure 4-4 shows the configuration of an S7-300 (not with CPU 312 IFM) with ungrounded reference potential. If you do not want to ground the reference potential, you must remove the jumper **on the CPU between the M terminal and functional ground**. If the jumper is not in place, the S7-300's reference potential is connected internally to the protective conductor over an RC network and the rail. This discharges radio-frequency interference current and precludes static charges.

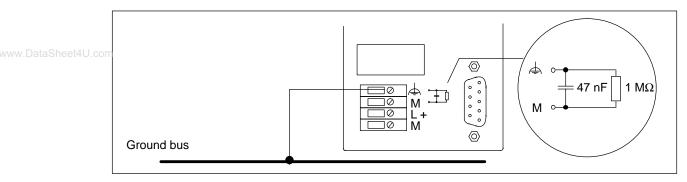


Figure 4-4 S7-300 Configuration with Ungrounded Reference Potential

Power Supply Units

In the case of power supply units, make sure that the secondary winding has no connection to the protective conductor. We recommend the use of the PS 307 power supply module.

Filtering the 24V DC Supply

If you supply the CPU from a battery without grounding the reference potential, you must filter the 24 V DC supply. Use an interference suppression device from Siemens, for example, B84102-K40.

Insulation Monitoring

If dangerous plant conditions can arise as a result of double faults, you must provide some form of insulation monitoring.

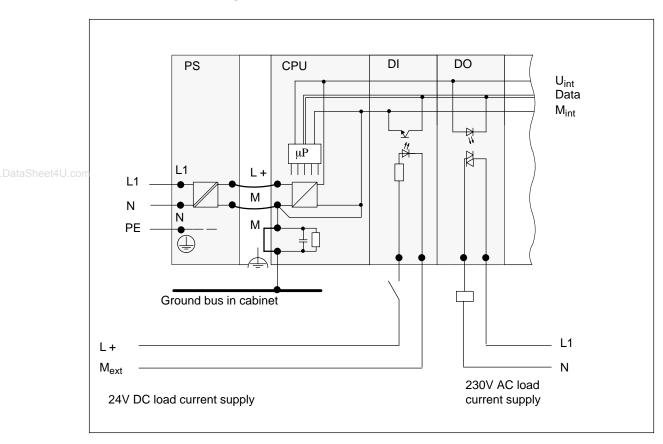
4.1.5 S7-300 Configuration with Isolated Modules

Isolation Between...

In configurations with isolated modules, the reference potentials of the control circuit ($M_{internal}$) and load circuit ($M_{external}$) are electrically isolated (see Figure 4-5).

Application

You use isolated modules for the following:


- All AC load circuits
- DC load circuits with separate reference potential

Examples of load circuits with separate reference potential:

- DC load circuits whose sensors have different reference potentials (for example if grounded sensors are located at some considerable distance from the control system and no equipotential bonding is possible)
- DC load circuits whose positive pole (L+) is grounded (battery circuits).

Isolated Modules and Grounding Concept

You can use isolated modules irrespective of whether the reference potential of the control system is grounded or not.

Potentials in a Configuration with Isolated Modules

Figure 4-5 Potentials in a Configuration with Isolated Modules

4.1.6 Configuration of an S7-300 with Non-Isolated Modules

Potentials in a Configuration with Non-Isolated Modules

Figure 4-6 shows the potentials of an S7-300 configuration with grounded reference potential with the non-isolated analog input/output module SM 334; AI 4/AO 2 \times 8/8Bit. For this analog input/output module, you must connect one of the M_{ANA} grounds with the chassis ground of the CPU.

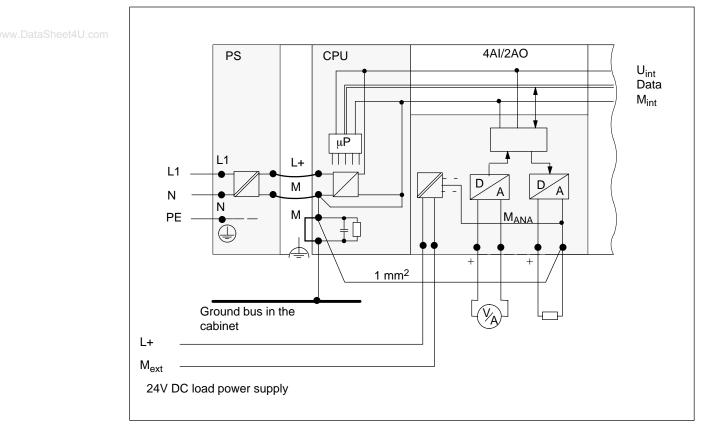


Figure 4-6 Potentials in a Configuration with the Non-Isolated SM 334 Analog Input/Output Module; AI 4/AO 2 \times 8/8Bit

4.1.7 Cable/Wiring Routing Inside Buildings

Rules for EMC Cable/Wiring Routing

Inside buildings (inside and outside cabinets), clearances must be observed between groups of different cables to achieve the necessary electromagnetic compatibility (EMC). Table 4-2 provides you with information on the general rules governing clearances to enable you to choose the right cables.

How to Read the Table

To find out how to run two cables of different types, proceed as follows:

- 1. Look up the type of the first cable in column 1 (Cables for ...).
- 2. Look up the type of the second cable in the corresponding field in column 2 (and Cables for ...).
- 3. Read off the guidelines to be observed from column 3 (Run ...).

Table 4-2 Cabling Inside Buildings

DataSheet4U.com	Cables for	and Cables for	Run
	Bus signals, shielded (SINEC L1, PROFIBUS)	Bus signals, shielded (SINEC L1, PROFIBUS)	In common bundles or cable ducts
	Data signals, shielded (programming devices, operator panels, printers, counter inputs, etc.)	Data signals, shielded (programming devices, operator panels, printers, counter inputs, etc.)	
	Analog signals, shielded	Analog signals, shielded	
	Direct voltage $(\leq 60 \text{ V})$, unshielded	Direct voltage $(\leq 60 \text{ V})$, unshielded	
	Process signals $(\leq 25 \text{ V})$, shielded	Process signals $(\leq 25 \text{ V})$, shielded	
	Alternating voltage $(\leq 25 \text{ V})$, unshielded	Alternating voltage $(\leq 25 \text{ V})$, unshielded	
	Monitors (coaxial cable)	Monitors (coaxial cable)	
		Direct voltage $(> 60 \text{ V and } \le 400 \text{ V}),$ unshielded	In separate bundles or cable ducts (no minimum clearance necessary)
		Alternating voltage $(> 25 \text{ V and } \le 400 \text{ V}),$ unshielded	
		Direct and alternating voltages	Inside cabinets:
		(> 400 V), unshielded	In separate bundles or cable ducts (no minimum clearance necessary)
			Outside cabinets:
			On separate cable racks with a clearance of at least 10 cm (3.93 in.)

Cables for	and Cables for	Run
Direct voltage (> 60 V and ≤ 400 V), unshielded Alternating voltage (> 25 V and ≤ 400 V), unshielded	Bus signals, shielded (SINEC L1, PROFIBUS)Data signals, shielded (programming devices, OPs, printers, count signals, etc.)Analog signals, shieldedDirect voltage (≤ 60 V), unshieldedProcess (≤ 25 V), shieldedAlternating voltage (≤ 25 V), unshieldedMonitors (coaxial cable)Direct voltage (≥ 60 V and ≤ 400 V), unshieldedAlternating voltage (≥ 25 V and ≤ 400 V), unshieldedDirect voltage (≥ 25 V and ≤ 400 V), unshieldedDirect and alternating voltages	In separate bundles or cable ducts (no minimum clearance necessary) In common bundles or cable ducts Inside cabinets:
	(> 400 V), unshielded	In separate bundles or cable ducts (no minimum clearance necessary)
		Outside cabinets:
		On separate cable racks with a clearance of at least 10 cm (3.93 in.)

Table 4-2 Cable/Wiring Routing Inside Buildings, continued

Cables for	and Cables for	Run	
Direct and alternating voltages (> 400 V),	Bus signals, shielded (SINEC L1, PROFIBUS)	Inside cabinets: In separate bundles or cable	
unshielded	Data signals, shielded (programming devices, OPs,	ducts (no minimum clearance necessary)	
	printers, count signals, etc.)	Outside cabinets:	
	Analog signals, shielded	On separate cable racks with a	
	Direct voltage $(\leq 60 \text{ V})$, unshielded	clearance of at least 10 cm (3.93 in.)	
	Process $(\leq 25 \text{ V})$, shielded		
	Alternating voltage $(\leq 25 \text{ V})$, unshielded		
	Monitors (coaxial cable)		
	Direct voltage $(> 60 \text{ V} \text{ and } \le 400 \text{ V}),$ unshielded		
	Alternating voltage (> 25 V and \leq 400 V), unshielded		
Direct and alternating voltages (> 400 V), unshielded	Direct and alternating voltages (> 400 V), unshielded	In common bundles or cable ducts	
SINEC H1	SINEC H1	In common bundles or cable ducts	
	Others	In separate bundles or cable ducts with a clearance of at leas 50 cm (19.65 in.)	

Table 4-2 Cable/Wiring Routing Inside Buildings, continued

4.1.8 Cable/Wiring Routing Outside Buildings

Rules for EMC Cable/Wiring Routing

When installing cables outside buildings, the same EMC rules apply as for inside buildings. The following also applies:

- Run cables on metal cable supports.
- Establish an electrical connection between the joints in the cable supports.
- Ground the cable supports.
- If necessary, provide adequate equipotential bonding between the various items of equipment connected.
- Take the necessary (internal and external) lightning protection and grounding measures in as far as they are applicable to your particular application (see below).

Rules for Lightning Protection Outside Buildings

Run your cables either:

- in metal conduits grounded at both ends, or
- in concrete cable ducts with continuous end-to-end armoring.

Overvoltage Protection Equipment

An individual appraisal of the entire plant is necessary before any lightning protection measures are taken (see Section 4.2).

4.1.9 Protecting Digital Output Modules from Inductive Overvoltage

Integrated Overvoltage Protection

The digital output modules of the S7-300 have integral surge protectors. Surge voltages occur when inductive loads (for example, relay coils and contactors) are switched off.

ww.DataSheet4U.com

Additional Overvoltage Protection

Inductive loads should only be fitted with supplementary surge protectors in the following cases:

- If SIMATIC output circuits can be switched off by means of additionally installed contacts (e.g. relay emergency stop contacts)
- If the inductive loads are not driven by SIMATIC modules

Note: Ask the supplier of the inductances how the various overvoltage protection devices should be rated.

ww.DataSheet4U.com

Example:

Figure 4-7 shows an output circuit that makes supplementary overvoltage protection necessary.

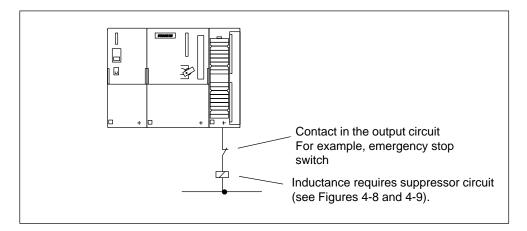


Figure 4-7 Relay Contact for Emergency Stop in the Output Circuit

Suppressor Circuit with DC-Operated Coils with Diodes and Zener Diodes

DC-operated coils are connected with diodes or Zener diodes.

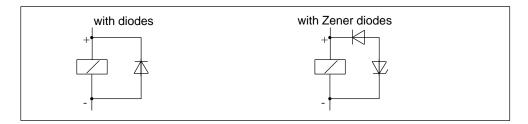
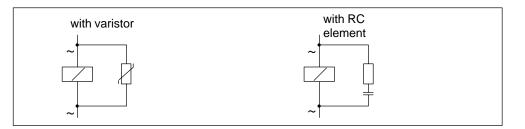


Figure 4-8 Suppressor Circuit with DC-Operated Coils with Diodes and Zener Diodes

Suppressor Circuit with Diodes/Zener Diodes


Diode/Zener diode circuits have the following characteristics:

- The overvoltages induced on circuit interruption are completely suppressed/Zener diode has a higher cut-off voltage.
- They have a high time delay (six to nine times higher than without a diode circuit)/Zener diode interrupts switch faster than a diode circuit.

Suppressor Circuit with AC-Operated Coils

ww.DataSheet4U.com

AC-operated coils are connected with varistors or RC elements.

Suppressor Circuit with Varistors

Suppressor circuits with varistors have the following characteristics:

- The amplitude of the switching overvoltage is limited, but not damped
- The wavefront steepness remains the same
- Very short time delay

Suppressor Circuit with RC Elements

Suppressor circuits with RC elements have the following characteristics:

- The amplitude and wavefront steepness of the switching overvoltage are reduced
- Short time delay.

4.2 Lightning Protection

Section	Contents	Page
4.2.1	Lightning Protection Zone Concept	4-21
4.2.2	Rules for the Transition Between Lightning Protection Zones 0↔1	4-23
4.2.3	Rules for the Transition Between Lightning Protection Zones 1↔2 and Greater	4-25
4.2.4	Sample Circuit for Overvoltage Protection of Networked S7-300s	4-28

ww.DataSheet4U.com

Reference Literature

The solutions given are based on the lightning protection zone concept described in the IEC 1312-1 "Protection against LEMP".

Overview

Failures are very often the result of overvoltages caused by:

- Atmospheric discharge or
- Electrostatic discharge.

We will begin by showing you what the theory of overvoltage protection is based on: the lightning protection zones concept.

At the end of this section, you will find rules for the transitions between the individual lightning protection zones.

Note

This section can only provide information on the protection of a **programmable controller** against overvoltages.

However, complete protection against overvoltage is guaranteed only if the whole surrounding building is designed to provide protection against overvoltages. This applies especially to constructional measures for the building at the planning stage.

If you wish to obtain detailed information on overvoltage protection, we therefore recommend you to address your Siemens contact or a company specialized in lightning protection.

4.2.1 Lightning Protection Zone Concept

The Principle of the Lightning Protection Zone Concept

The principle of the lightning protection zone concept states that the volume to be protected, for example, a manufacturing hall, is subdivided into lightning protection zones in accordance with EMC guidelines (see Figure 4-10).

The individual lightning protection zones are made up of:

The outer lightning protection of the building (field side)	Lightning protection zone 0
Shielding	
Buildings	Lightning protection zone 1
Rooms and/or	Lightning protection zone 2
Devices	Lightning protection zone 3

Effects of the Lightning Strike

Direct lightning strikes occur in lightning protection zone 0. The lightning strike creates high-energy electromagnetic fields which can be reduced or removed from one lightning protection zone to the next by suitable lightning protection elements/measures.

Overvoltage

In lightning protection zones 1 and higher, surges can result from switching operations and interference.

ww.DataSheet4U.com

Schematic of the Lightning Protection Zones

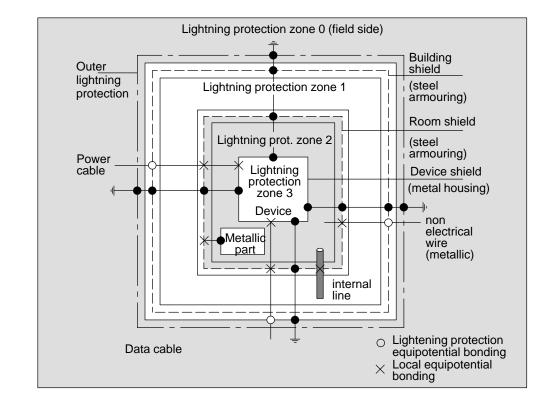


Figure 4-10 shows a schematic of the lightning protection zone concept for a free-standing building.

vw.DataSheet4U.com

Figure 4-10 Lightning Protection Zones of a Building

Principle of the Transitions between Lightning Protection Zones

At the transitions between the lightning protection zones, you must take measures to prevent surges being conducted further.

The lightning protection zone concept also states that all cables at the transitions between the lightning protection zones that can carry lightning stroke current (!) must be included in the lightning protection equipotential bonding.

Lines that can carry lightning stroke current include:

- Metal pipelines (for example, water, gas and heat)
- Power cables (for example, line voltage, 24 V supply) and
- Data cables (for example, bus cable).

4.2.2 Rules for the Transition Between Lightning Protection Zones 0 ↔ 1

Rule for the Transition 0 ↔ 1 (Lightning Protection Equipotential Bonding)

The following measures are suitable for lightning protection equipotential bonding at the transition between lightning protection zones $0 \Leftrightarrow 1$:

• Use grounded, spiraled, current-conducting metal strips or metal braiding, for example, NYCY or A2Y(K)Y, as a cable shield at the start and end,

and

- lay cable
 - in continuous metal pipes that are grounded at the start and end, or
 - in ducts of armored concrete with continuous armoring or
 - on closed metal cable racks grounded at the start and end,
 - or
- use fiber optic cables instead of lightning stroke current-carrying cables.

Additional Measures

If you cannot take the measures listed above, you must install a high-voltage protector at the $0 \Leftrightarrow 1$ transition with a corresponding lightning conductor. Table 4-3 contains the components you can use for high-voltage protection of your plant.

No.	Cables for	with the Following at Transi- tion 0 ↔ 1 Order No.
1	3-phase TN-C system	3 DEHNport 5 SD 7 028* lightning conductors Phase L1/L2/L3 to PEN
	3-phase TN-S and TT system	4 DEHNport 5 SD 7 028* lightning conductors Phase L1/L2/L3/N to PE
	• AC TN-L, TN-S, TT system	2 DEHNport 5 SD 7 028* lightning conductors Phase L1 + N to PE
2	24V DC power supply	1KT lightning conductor Type A D 24 VDSN: 919 253

Table 4-3 High-Voltage Protection of Cables Using Surge Protection Components

ww.DataSheet4U.com

	No.	Cables for	with the Following at Transi- tion 0 ↔ 1
	3	Bus cable	
		• MPI, RS 485	• up to 500 kbps
			1 KT lightning conductor DSN: 919 232 Type ARE 8 V -
			• over 500 kbps
			1 KT lightning conductor DSN: 919 270 Type AHFD 5 V -
.DataSheet4U.com		• RS 232 (V.24)	• per core pair
			1 KT lightning conductor DSN: 919 23 Type ARE 15 V -
	4	Inputs/outputs of digital modules	
		and power supply	
		• 24V DC	1KT lightning conductorDSN: 919 253Type AD 24 V -
		• 120/230V AC	2 DEHNguard 150 900 603* surge arresters
	5	Inputs/outputs of analog modules	
		• Up to 12 V +/-	1 KT lightning conductor DSN: 919 220 Type ALE 15 V -
		• Up to 24 V +/-	1 KT lightning conductor DSN: 919 22 Type ALE 48 V -
		• Up to 48 V +/-	1 KT lightning conductor DSN: 919 222 Type ALE 60 V -

T			• • • •
Table 4-3	High-Voltage Protection of	Cables Using Surge Protection	Components, continued

* You can order these components direct from

DEHN + SÖHNE GmbH + Co. KG Elektrotechnische Fabrik Hans-Dehn-Str. 1 D-92318 Neumarkt Federal Republic of Germany

4.2.3 Rules for the Transitions Between 1 ↔ 2 and Greater Lightning Protection Zones

Rules for 1 ↔ 2 and Greater Transitions (Local Equipotential Bonding)

The following applies to all $1 \leftrightarrow 2$ and greater lightning protection zone transitions:

- Set up local equipotential bonding at each subsequent lightning protection zone transition.
- Include all cables (also metal conduits, for example) in the local equipotential bonding at all subsequent lightning protection zone transitions.
- Include all metal installations located within the lightning protection zone in the local equipotential bonding (for example, metal part within lightning protection zone 2 at transition 1 ↔ 2).

Additional Measures

We recommend low-voltage protection:

- For all 1 ↔ 2 and greater lightning protection zone transitions and
- For all cables that run within a lightning protection zone and are longer than 100 m

Lightning Protection Element for the 24V DC Power Supply

You must use only the KT lightning conductor, Type AD 24 V SIMATIC for the 24V DC power supply of the S7-300. All other surge protection components do not meet the required tolerance range of 20.4 V to 28.8 V of the S7-300's power supply.

Lightning Conductor for Signal Modules

You can use standard surge protection components for the digital input/output modules. However, please note that these only permit a maximum of $1.15 \times V_{Nom}$ = 27.6 V for a rated voltage of 24V DC. If the tolerance of your 24V DC power supply is higher, use the surge protection components for 48V DC nominal voltage.

You can also use the KT lightning conductor, Type AD 24 V SIMATIC. However, this can result in the following restrictions:

- Digital inputs: An increased input current can flow in the case of negative input voltages.
- Digital outputs: The release time of contactors can increase significantly.

ww.DataSheet4U.com

Low-Voltage Protection Elements for 1 ↔ 2

We recommend the surge protection components listed in Table 4-4 for the interfaces between lightning protection zones $1 \Leftrightarrow 2$. You must use these low-voltage protection elements for the S7-300 in order to meet the conditions for the CE mark.

	No.	Cables for	with the Following at Transi- tion 1 ↔ 2	Order No.
DataSheet4U.com	1	3-phase TN-C system	3 DEHNguard 275 surge arresters	900 600* 5 SD 7 030
		3-phase TN-S and TT system	4 DEHNguard 275 surge arresters	900 600* 5 SD 7 030
		• AC TN-L, TN-S, TT system	2 DEHNguard 275 surge arresters	900 600* 5 SD 7 030
	2	24V DC power supply	1 KT lightning conductor Type A D 24 V	DSN: 919 253
	3	Bus cable MPI, RS 485 	 up to 500 kbps 1 KT lightning conductor Type ARE 8 V - 	DSN: 919 23
			 over 500 kbps 1 KT lightning conductor Type AHFD 5 V - 	DSN: 919 27
		• RS 232 (V.24)	 per core pair 1 KT lightning conductor Type ARE 15 V - 	DSN: 919 23
	4	Inputs/outputs of digital modules 24V DC 	1 KT lightning conductor Type AD 24 V -	DSN: 919 25
		• 120/230V AC	2 DEHNguard 150 surge arresters	900 603*
	5	Inputs of analog modulesUp to 12 V +/-	1 KT ALD 12 V terminal block on insulated rail	DSN: 919 210

Table 4-4 Low-Voltage Protection for Lightning Protection Zone 1 ↔ 2

* You can order these components direct from

DEHN + SOHNE GmbH + Co. KG Elektrotechnische Fabrik Hans-Dehn-Str. 1 D-92318 Neumarkt Federal Republic of Germany

Low-Voltage Protection Elements for $2 \leftrightarrow 3$

We recommend the surge protection components listed in Table 4-5 for the transitions between lightning protection zones $2 \leftrightarrow 3$. You must use these low-voltage protection elements for the S7-300 in order to meet the conditions for the CE mark.

No.	Cables for	with the Following at Transi- tion 2 ↔ 3	Order No.
1	3-phase TN-C system	3 DEHNguard 275	900 600*
		surge arresters	5 SD 7 030
	• 3-phase TN-S and TT system	4 DEHNguard 275	900 600*
		surge arresters	5 SD 7 030
	• AC TN-L, TN-S, TT system	2 DEHNguard 275	900 600*
		surge arresters	5 SD 7 030
2	24V DC power supply	1 KT lightning conductor Type A D 24 V	DSN: 919 25
3	Bus cable		
	• MPI, RS 485	• up to 500 kbps	
		1 KT lightning conductor Type ARE 8 V -	DSN: 919 23
		• over 500 kbps	
		1 KT lightning conductor Type AHFD 5 V -	DSN: 919 27
	• RS 232 (V.24)	• per core pair	
		1 KT lightning conductor Type ARE 15 V -	DSN: 919 23
4	Inputs of digital modules		
	• 24V DC	1 Terminal block FDK 60 V on insulated rail	DSN: 919 99
	• 120/230V AC	2 DEHNguard 150 surge arresters	900 603*
5	Outputs of analog modules		
	• Up to 12 V +/-	1 Terminal block Type FDK 12 V on an insulated rail, which is connected to M – of the module supply	DSN: 919 99

Table 4-5 Low-Voltage Protection for Lightning Protection Zone 2 ↔ 3

* You can order these components direct from

DEHN + SÖHNE GmbH + Co. KG Elektrotechnische Fabrik Hans-Dehn-Str. 1 D-92318 Neumarkt Federal Republic of Germany

4.2.4 Sample Circuit for Overvoltage Protection of Networked S7-300s

Components in Figure 4-11

Table 4-6 explains the consecutive numbers in Figure 4-11:

Table 4-6Example of a Configuration Fulfilling Lightning Protection Requirements
(Legend for Figure 4-11)

www.DataSheet4U.com

No. from Figure 4-11	Components	Description
1	DEHNport lightning conductors, 2 - 4 depending on mains system Order no.: 900 100*	High-voltage protection against direct lightning strikes and surges as of transition 0 ↔ 1
2	2 DEHNguard 275 surge arresters, Order no.: 900 600*	High-voltage surge protection at transition 1 ↔ 2
3	 In the spur line intermediate adapter Type FS 9E-PB Order no.: DSN 924 017 In the spur line 	Low-voltage surge protection for RS 485 interfaces at transition 1 ↔ 2
	 In the spur line standard rail 35 mm with connecting cable Type ÜSD-9-PB/S-KB Order no.: DSN 924 064 	
4	Digital modules: KT lightning conductor, type AD 24 V SIMATIC Analog modules: KT lightning conductor, type ARE 12	Low-voltage surge protection at inputs and outputs of the signal modules at transition 1 ↔ 2
5	V– Shielding the bus cable:	_
	Copper plate Shielding	
6	Equipotential bonding cable 16 mm ²	-
7	KT lightning conductor, type AHFD, for building entry point Order No.: DSN 919 270	Low-voltage surge protection for RS 485 interfaces at transition 0 ↔ 1

Interconnection Example

Figure 4-11 gives an example of how to wire connect networked S7-300s in order to achieve effective protection against surges:

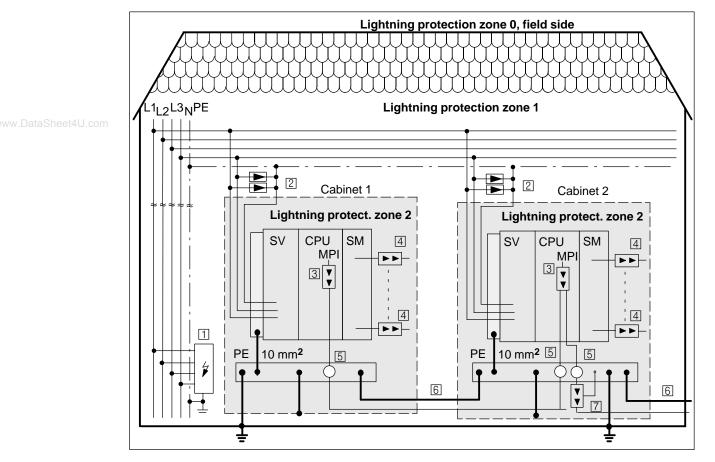


Figure 4-11 Example of the Interconnection of Networked S7-300s

4.3 Wiring

Section	Contents	Page
4.3.1	Wiring Rules	4-30
4.3.2	Wiring the Power Supply Module and CPU	4-32
4.3.3	Wiring the Front Connectors of the Signal Modules	4-35
4.3.4	Connecting Shielded Cables Using the Shield Contact Element	4-39

ww.DataSheet4U.com

Prerequisite

You have already installed the S7-300 as described in Chapter 2.

4.3.1 Wiring Rules

Table 4-7 Wiring Rules for the Power Supply and CPU		
Wiring F	Rules for	Power Supply and CPU
Connectable cable cross-sections for rigid cables		No
Connectable cable	Without wire end ferrule	0.25 to 2.5 mm ²
cross-sections for flexible cables	With wire end ferrule	0.25 to 1.5 mm ²
Number of cables per terminal connection		1 or combination of 2 conductors up to 1.5 mm ² (total) in a common wire end ferrule
Maximum outside diameter of the insulation		Ø 3.8 mm
Length of stripped lines	Without insulating collar	11 mm
With insulating collar		11 mm
Wire end ferrules to DIN 46228	Without insulating collar	Version A, 10 to 12 mm long
	With insulating collar	Version E, up to 12 mm long

Wiring Rules for		Module Front Connectors (Spring Terminal and Screw-Type Terminal)	
		20-pin	40-pin
Connectable cable rigid cables	e cross-sections for	No	No
Connectable cable	Without wire end ferrule	0.25 to 1.5 mm ²	0.25 to 0.75 mm ²
cross-sections for flexible cables	With wire end ferrule	0.25 to 1.5 mm ²	0.25 to 0.75 mm ² Potential infeed: 1.5 mm ²
Number of cables connection	per terminal	1 or combination of 2 conductors up to 1.5 mm ² (total) in a common wire end ferrule	1 or combination of 2 conductors up to 0.75 mm ² (total) in a common wire end ferrule
Maximum outside	diameter of the	Ø 3.1 mm	Ø 2.0 mm
insulation		Max. qty. 20	Max. qty. 40
			Ø 3.1 mm
			Max. qty. 20
Length of stripped lines	Without insulating collar	6 mm	6 mm
	With insulating collar	6 mm	6 mm
Wire end ferrulesWithout insulatto DIN 46228collar		Version A, 5 to 7 mm long	Version A, 5 to 7 mm long
	With insulating collar	Version E, up to 6 mm long	Version E, up to 6 mm long

Table 4-8 Wiring Rules for Module Front Connectors

ww.DataSheet4U.com

4.3.2 Wiring the Power Supply Module and CPU

Power Cables

Use flexible cables with a cross-section of between 0.25 and 2.5 $\rm mm^2$ to wire the power supply.

If you use only one cable per connection, you don't need an end ferrule.

www.DataSheet4U.comPower Connector (not for CPU 312 IFM)

Use the power connector when wiring the PS 307 power supply module to the CPU. The power connector comes with the power supply module.

Wiring the CPU 312 IFM

The PS 307 power supply module and the CPU 312 IFM are wired via the front connector of the integrated inputs/outputs of the CPU 312 IFM (see Section 8.4.1). You therefore cannot use the power connector for the CPU 312 IFM.

Other 24V Connections

Above the power connector on the PS 307 power supply there are still a number of free 24V connections for powering the I/O modules.

Wiring with the Power Connector

To wire the PS 307 power supply module and CPU, proceed as follows (see Figure 4-12).

Warning

Accidental contact with live conductors is possible, if the power supply module and any additional load power supplies are switched on.

Make sure the S7-300 is absolutely dead before doing any wiring!

www.DataSheet4U.com

- 1. Open the front doors of the PS 307 power supply and CPU.
- 2. Undo the strain-relief assembly on the PS 307.
- 3. Strip the insulation from the power cable (230V/120V), and connect it to the PS 307.
- 4. Screw the strain-relief assembly tight.
- 5. **CPU 312 IFM:** Strip the insulation off the power cable of the CPU 312 IFM, and connect it to the PS 307 an.

CPU 313/314/314 IFM/315/315-2 DP/316-2 DP/318-2: Insert the power connector, and screw it in tightly.

6. Close the front doors.

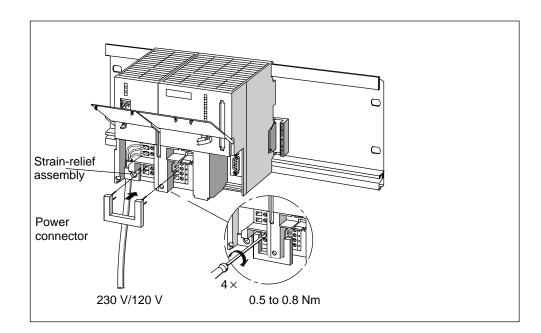


Figure 4-12 Wiring the Power Supply Module and CPU to the Power Connector

Setting the Power Supply to the Required Mains Voltage

Check to see that the voltage selector switch on the power supply module is set to your local mains voltage. This switch is always factory-set to 230 V on the PS 307. To select another mains voltage, do the following:

- 1. Pry the cover off with a screwdriver.
- 2. Set the selector to your mains voltage.
- 3. Replace the cover.

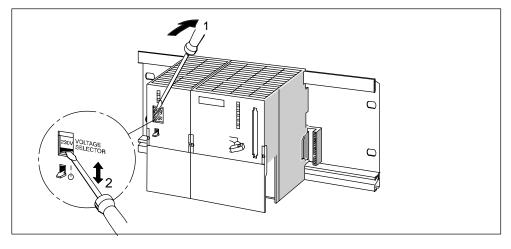


Figure 4-13 Setting the Mains Voltage for the PS 307

4.3.3 Wiring the Front Connectors of the Signal Modules

Cables

You can use flexible cables with cross-sections as in Table 4-8 on page 4-31.

You do not need wire end ferrules. If you use wire end ferrules, only use those listed in Table 4-8 on page 4-31.

et4U.com Integrated Inputs/Outputs

You wire the integrated inputs/outputs of the CPU 312 IFM and 314 IFM also via the front connector as described in this section.

If you use the possible digital inputs of the CPUs for the special functions, you wire these inputs with shielded cables via a shield contact element (see Section 4.3.4). This also applies when wiring the analog inputs/outputs of the CPU 314 IFM.

Types of Front Connector

You can order the 20- and 40-pin front connectors with spring or screw-type terminals. You will find the order numbers in Appendix F.

Spring Terminals

To wire the front connector using spring terminals, simply insert the screwdriver vertically into the opening with the red opening mechanism, put the cable into the correct terminal, and remove the screwdriver.

Tip: There is a separate opening for test probes up to 2 mm in diameter to the left of the opening for the screwdriver.

Wiring the Front Connector

Wire the screw-type front connector as follows:

- 1. Prepare the connector for wiring.
- 2. Wire the connector.
- 3. Prepare the module for operation.

These three steps are described on the following pages.

Preparing the Connector for Wiring.

Warning

Accidental contact with live conductors is possible if the power supply module and any additional load power supplies are switched on.

Make sure the S7-300 is absolutely dead before doing any wiring!

w.DataSheet4U.com

- 1. Open the front door.
- 2. Place the front connector in the wiring position.

To do this, push the front connector into the signal module until it snaps into place. The front connector still protrudes from the module in this position.

An advantage of the wiring position is that it makes wiring easier; in the wiring position a wired front connector has no contact with the module.

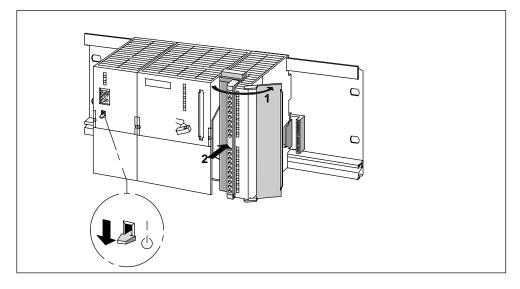


Figure 4-14 Bringing the Front Connector into the Wiring Position

- 3. Strip the insulation off the cables (see Table 4-8 on page 4-31)
- 4. Do you want to use end ferrules?

If so: Press the end ferrules and the cables together

Wiring the Front Connector

Table 4-9	Wiring the Front Connector
-----------	----------------------------

Step	20-Pin Front Connector	40-Pin Front Connector
1.	Thread the cable strain-relief assembly into the front connector.	_
2.	2. Do you want to bring the cables out at the bottom of the module?	
	If so:	
	Start with terminal 20, and wire the terminals in the following order: terminal 20, 19, 1.	Starting at terminal 40 or 20, connect up the terminals in alternating order, that is terminals 39, 19, 38, 18 etc., down to terminals 21 and 1.
	If not:	
	Start with terminal 1, and wire the terminals in the following order: terminal 1, 2, 20.	Starting at terminal 1 or 21, connect up the terminals in alternating order, that is terminals 2, 22, 3, 23 etc., up to terminals 20 and 40.
3.	With screw-type terminals: Also tighten the screws of any terminals that are not wired.	
		Attach the cable strain-relief assembly around the cable and the front connector
	0.5 to 0.8 Nm	0.4 to 0.7 Nm 3 4

Preparing the Signal Module for Operation

Table 4-10 Preparing the Signal Module for Operation	on
--	----

	Step	20-Pin Front Connector	20-Pin Front Connector 40-Pin Front Connector		
J.com	1.	Press down the unlocking button on the top of the module and, at the same time, push the front connector into its operating position on the module. When the front connector reaches its operating position, the unlocking button will snap back into the locking position.	Tighten screws to bring front connector to its operating position.		
		Note: When the front connector is put in its encoding device engages in the front conn this type of module (see Section 7.2).			
	2.	Close the front door.			
	3.	Enter the addresses for identifying the indi	vidual channels on the labeling strip.		
	4.	Slide the labeling strip into the guides on the front door.			
	_		0.4 to 0.7 Nm		

4.3.4 Connecting Shielded Cables via a Shield Contact Element

Application

Using the shield contact element you can easily connect all the shielded cables of S7 modules to ground by directly connecting the shield contact element to the rail.

Also for the CPU 312 IFM and 314 IFM

ww.DataSheet4U.com

You can also use the shield contact element for wiring the integral inputs/outputs of the CPU 312 IFM and 314 IFM, when using inputs for the special functions or when wiring the analog inputs/outputs for the CPU 314 IFM.

Design of the Shield Contact Element

The shield contact element consists of the following parts:

- A fixing bracket with two bolts for attaching the element to the rail (Order No.: 6ES5 390-5AA00-0AA0) and
- The shield terminals

Depending on the cable cross-sections used, you must use the following shield terminal:

Table 4-11 Assignment of Cable Cross-Sections and Terminal Elements

Cable with Shield Diameter	Shield Terminal Order No.:
2 cables with a shield diameter of 2 to 6 mm (0.08 to 0.23 in.) each	6ES7 390-5AB00-0AA0
1 cable with a shield diameter of 3 to 8 mm (0.12 to 0.31 in.)	6ES7 390-5BA00-0AA0
1 cable with a shield diameter of 4 to 13 mm (0.16 to 0.51 in.)	6ES7 390-5CA00-0AA0

The shield contact element is 80 mm (3.15 in.) wide with space for two rows each with 4 shield terminals.

Installing the Shield Contact Element

Install the shield contact element as follows:

- 1. Push the two bolts of the fixing bracket into the guide on the underside of the rail. Position the fixing bracket under the modules to be wired.
- 2. Bolt the fixing bracket tight to the rail.
- 3. A slotted web is arranged at the bottom side of the terminal element. Place the shield terminal at this position onto edge a of the fixing bracket (see Figure 4-15). Press the shield terminals down and swing them into the desired position.

w.DataSheet4U.com

You can attach up to four terminal elements on each of the two rows of the shield contact element.

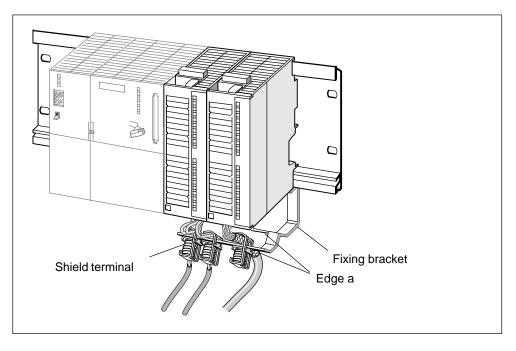


Figure 4-15 Configuration of Two Signal Modules With Shield Contact Element

Attaching Cables

You can only attach one or two shielded cables per shield terminal (see Figure 4-16 and Table 4-11). The cable is connected by its bare cable shield. There must be at least 20 mm (0.78 in.) of bare cable shield. If you need more than 4 shield terminals, start wiring at the rear row of the shield contact element.

Tip: Use a sufficiently long cable between the shield terminal and the front connector. You can thus remove the front connector without the need to also remove the shield terminal.

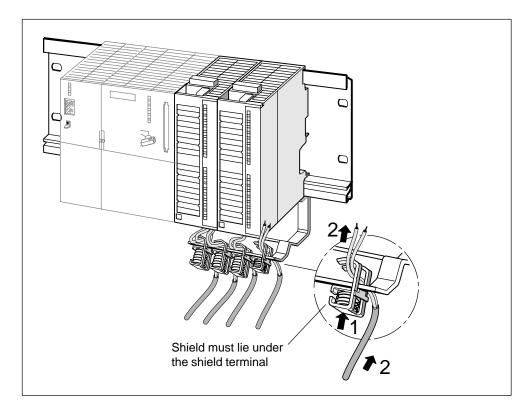


Figure 4-16 Attaching Shielded 2-Wire Cables to a Shield Contact Element

ww.DataSheet4U.con

www.DataSheet4U.com

5

Networking

Similar Structure

ww.DataSheet4U.com

The structure of an MPI subnet is basically the same as a PROFIBUS subnet. That means the same rules and the same components are used to set up the subnet. The only exception arises if you set a transmission rate > 1.5 Mbps in a PROFIBUS subnet. In this case, you will need other components. Special reference is made to these components where relevant in this documentation.

Since the structure of an MPI subnet does not differ from that of a PROFIBUS subnet, general reference is made in the following sections to configuring a subnet.

In This Chapter

Section	Contents	Page
5.1	Configuring a Subnet	5-2
5.2	Network Components	5-15

5.1 Configuring a Subnet

In This Chapter

Section	Contents	
5.1.1	Prerequisites	
5.1.2	Rules for Configuring a Subnet	
5.1.3	3 Cable Lengths	

ww.DataSheet4U.com

Device = Node

Declaration: In the following, all devices that you connect in an MPI subnet are called nodes.

5.1.1 Prerequisites

MPI/PROFIBUS Addresses

To ensure that all nodes can communicate with one another, you must allocate them an address **before** networking:

- An "MPI address" and a "highest MPI address" in the MPI subnet
- A "PROFIBUS address" and a "highest PROFIBUS address" in a PROFIBUS subnet.

Set these MPI/PROFIBUS addresses individually for each node using the programming device (also on the slave switch in the case of some PROFIBUS-DP slaves).

Note

The RS 485 repeater is not allocated an "MPI address" or a "PROFIBUS address".

MPI Addresses	PROFIBUS Addresses
0 to 126	0 to 125
Of these, the following are reserved:	Of these, the following are reserved:
0 for the PG	0 for the PG
1 for the OP	
2 for the CPU	

Table 5-1 Permissible MPI/PROFIBUS Addresses

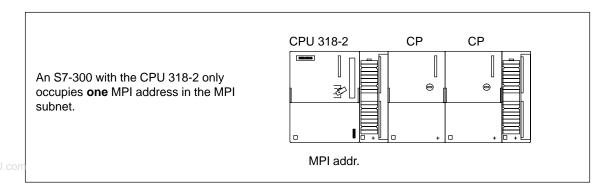
ww.DataSheet4U.com

Rules for the MPI/PROFIBUS Addresses

Observe the following rules before assigning MPI/PROFIBUS addresses:

- All MPI/PROFIBUS addresses in a subnet must be different.
- The highest MPI/PROFIBUS address must be ≥ the largest actual MPI/PROFIBUS address and be identical for each node. (Exception: If the programming device is connected to several nodes; see Section 6.3.2).

Differences in the Case of MPI Addresses of CPs/FMs in an S7-300


Please note the following peculiarities and differences when using CPs/FMs with a separate MPI address dependent on the CPU being used.

CPU 312 IFM to 316-2 DP:

Options	Example
Example: S7-300 with a CPU and 2 CPs in a configuration. The following 2 possibilities exist for the assignment of MPI addresses of the CP/FM in one configuration:	
Option 1 The CPU accepts the MPI addresses of the CPs you set in <i>STEP 7</i> . As of <i>STEP 7 V 4.02</i> (see Section 11.2)	MPI addr. MPI MPI addr. "x" addr. "z"
Option 2 The CPU automatically establishes the MPI addresses of the CPs in their configuration in accordance with the MPI addr. pattern. CPU MPI addr.+1 MPI addr.+2	MPI MPI MPI addr. addr.+1 addr.+2

Table 5-2 MPI Addresses of CPs/FMs in an S7-300 (with the CPU 312 IFM to 316-2 DP)

CPU 318-2

Recommendation for MPI Addresses

Reserve the MPI address "0" for a service programming device and "1" for a service OP that will be connected temporarily to the MPI if required. This means, that you must assign different addresses to programming devices/OPs that are integrated in the MPI subnet.

Recommendation for the MPI address of the CPU in the event of replacement or servicing:

Reserve the MPI address "2" for a CPU. You thus prevent double MPI addresses occurring after connection of a CPU with default settings to the MPI subnet (for example, when replacing a CPU). This means that you must assign an MPI address greater than "2" to the CPUs in the MPI subnet.

Recommendation for PROFIBUS Addresses

Reserve the PROFIBUS address "0" for a service programming device that may subsequently be temporarily connected to the PROFIBUS subnet if required. Allocate other PROFIBUS addresses to the programming devices integrated in the PROFIBUS subnet.

5.1.2 Rules for Configuring a Subnet

In This Section

This chapter describes how to configure a subnet and provides examples.

Segment

ww.DataSheet4U.com

A segment is a bus cable between two terminating resistors. A segment can contain up to 32 nodes. A segment is further limited by the permissible cable length, which depends on the transmission rate (see Section 5.1.3).

Rules on Connecting the Nodes of a Subnet

• **Before** you interconnect the individual nodes of the subnet you must assign the MPI address and the highest MPI address or the "PROFIBUS address" and the "highest PROFIBUS address" to each node (except for RS 485 repeater).

Mark all the nodes in a subnet by putting their address on their housings. In this way, you can always see which node has been assigned which address in your system. For this purpose, each CPU comes with an enclosed sheet of address labels.

• Connect all nodes in the subnet "in a row"; that is, integrate the stationary programming devices and OPs direct in the subnet.

Connect only those programming devices/OPs that are required for commissioning or maintenance via spur lines to the subnet.

Note

As of 3 Mbps, use only bus connectors with the order no. 6ES7 972-0B.10-0XA0 or 6ES7 972-0B.40-0XA0 to connect the nodes. (see Section 5.2)

As of 3 Mbps, use only the programming device connecting cable with the order no. 6ES7 901-4BD00-0XA0 to connect the programming device. (see Section 5.2)

Rules (Continued)

• If you operate more than 32 nodes on a network, you must connect the bus segments via RS 485 repeaters.

All bus segments in a PROFIBUS subnet must have at least one DP master and one DP slave between them.

• You connect non-grounded bus segments and grounded bus segments via RS 485 repeaters (see the description of the RS 485 repeater in the *Module Specifications* Reference Manual).

ww.DataSheet4U.com

Each RS 485 repeater that you use reduces the maximum number of nodes on each bus segment. That means if a RS 485 repeater is installed in one of the bus segments, only a further 31 nodes can be installed in that segment. The number of RS 485 repeaters has **no** impact on the maximum number of nodes on the bus, however.

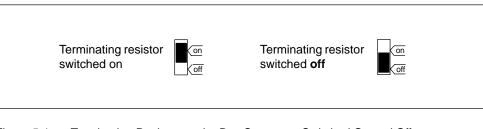
Up to 10 segments can be installed in a row.

- Switch the terminating resistor on at the first and last node of a segment.
- **Before** you integrate a new node in the subnet, you must switch off its supply voltage.

Components

You connect the individual nodes via bus connectors and the PROFIBUS bus cable (see also Section 5.2). Make sure that the bus connector is provided with a programming device socket so that a programming device can be connected if required.

Use RS 485 repeaters to connect segments or extend the cable.

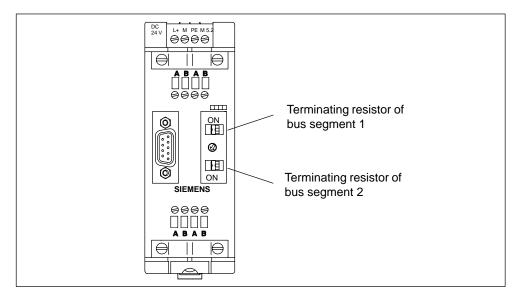

Terminating Resistor

A cable must be terminated with its surge impedance. To do this, switch on the terminating resistor on the first and last node of a subnet or a segment.

The nodes with a terminating resistor switched on must have their power supply switched on during power up and operation.

The Terminating Resistor on the Bus Connector

Figure 5-1 shows you how to switch on the terminating resistor on the bus connector.




ww.DataSheet4LL.com

Figure 5-1 Terminating Resistor on the Bus Connector Switched On and Off

The Terminating Resistor on the RS 485 Repeater

Figure 5-2 shows you where to switch on the terminating resistor on the RS 485 repeater.

Example: Terminating Resistor in the MPI Subnet

Figure 5-3 shows where you must connect the terminating resistor in a possible MPI subnet configuration.

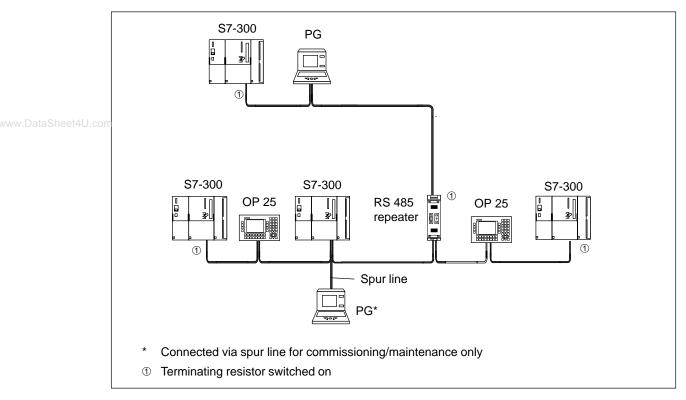


Figure 5-3 Connecting Terminating Resistors in an MPI Subnet

Example of an MPI Subnet

Figure 5-4 shows an MPI subnet that is configured in accordance with the above rules.

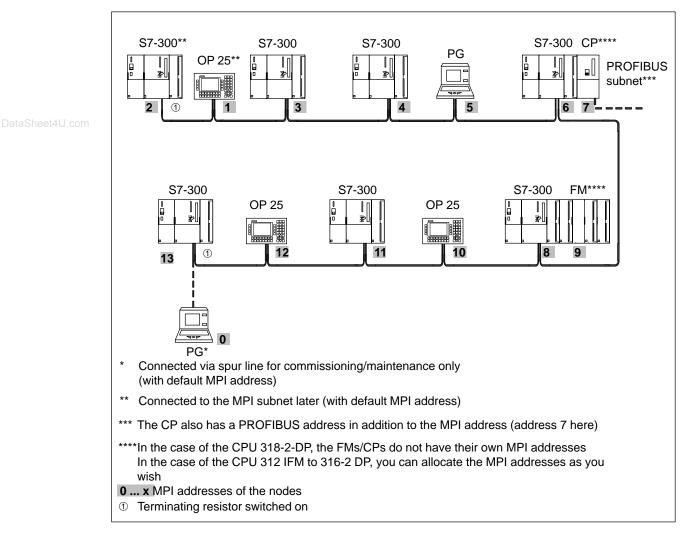
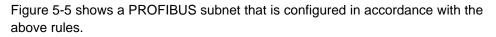



Figure 5-4 Example of an MPI Subnet

Example of a PROFIBUS Subnet

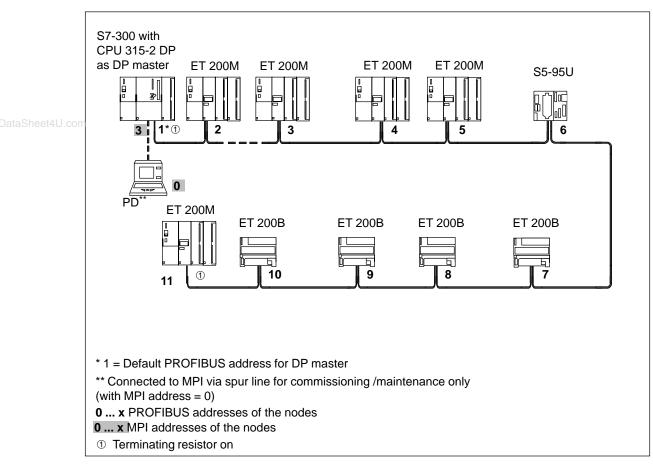


Figure 5-5 Example of a PROFIBUS Subnet

Example with the CPU 315-2 DP

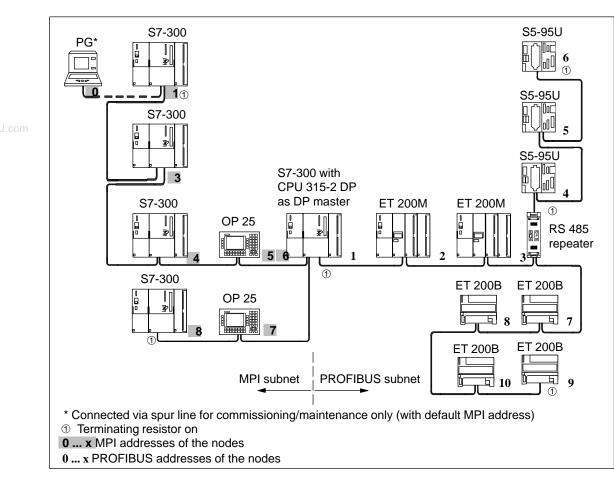


Figure 5-6 shows an MPI subnet with an integrated CPU 315-2 DP that is also operating as a DP master in a PROFIBUS subnet.

Figure 5-6 Example of a Configuration with the CPU 315-2 DP in an MPI and PROFIBUS Subnet

5.1.3 Cable Lengths

Segment in the MPI Subnet

You can implement cable lengths of up to 50 m (164 ft.) in an MPI subnet segment. The 50 m is measured from the 1st node to the last node of a segment.

Transmission rate	Maximum Cable Length of a Segment (in mm)		
	CPU 312 IFM to 316-2 DP (Non-Isolated MPI Interface)	318-2 (Non-Isolated MPI Interface)	
19.2 kbps	50	1000	
187.5 kbps			
1.5 Mbps	_	200	
3.0 Mbps	_	100	
6.0 Mbps			
12.0 Mbps			

Table 5-3 Permissible Cable Lengths in an MPI Subnet Segment

Segment in the PROFIBUS Subnet

The cable length in a segment of a PROFIBUS subnet depends on the transmission rate (see Table 5-4).

Table 5-4Permissible Cable Lengths in a PROFIBUS subnet Depending on the
Transmission Rate

Transmission rate	Maximum Cable Length of a Segment (in mm)
9.6 to 187.5 kbps	1000
500 kbps	400
1.5 Mbps	200
3 to 12 Mbps	100

* With a non-isolated interface

Longer Cable Lengths

If you want to implement cable lengths above those permitted in a segment, you must use RS 485 repeaters. The maximum cable length possible between two RS 485 repeaters corresponds to the cable length of a segment (see Table 5-4). Please note that these maximum cable lengths only apply if **no** other node is installed between the two RS 485 repeaters. You can connect up to 9 RS 485 repeaters in series.

When counting the total number of all nodes to be connected, you must observe, that an RS 485 repeater counts as a node of the MPI subnet, even if it is not assigned an MPI/PROFIBUS address.

Figure 5-7 shows how you can increase the maximum cable length for an MPI subnet by means of RS 485 repeaters.

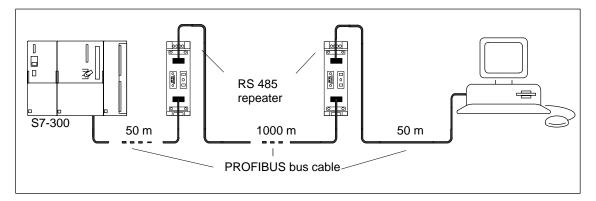


Figure 5-7 Maximum Cable Length Between Two RS 485 Repeaters

Length of the Spur Lines

If you do not attach the bus cable directly to the bus connector (for example when using a L2 bus terminal), you must take into account the maximum possible length of the spur line!

The following table lists the maximum permissible lengths of spur lines per segment:

As of 3 Mbps, use the programming device connecting cable with the order no. 6ES7 901-4BD00-0XA0 to connect the programming device or PC. Other types of spur lines must not be used.

w.DataSheet4U.com

Transmission Rate	Max. Length of Spur Line per Segment	Number of Nodes with Spur Line Length of	
		1.5 m or 1.6 m	3 m
9.6 to 93.75 kbps	96 m	32	32
187.5 kbps	75 m	32	25
500 kbps	30 m	20	10
1.5 Mbps	10 m	6	3
3 to 12 Mbps	_	-	-

Table 5-5	Lengths of Spur Lines per Segment
-----------	-----------------------------------

ww.DataSheet4U.com

Example

Figure 5-8 shows you a possible configuration of an MPI subnet. This example illustrates the maximum possible distances in an MPI subnet.

5.2 Network Components

Purpose

Table 5-6	Network Components

Purpose	Components	Description
to configure a network	PROFIBUS bus cable	Section 5.2.1
to connect a node to the network	Bus connector	Section 5.2.2
to amplify the signal to connect segments	RS 485 repeater	Section 5.2.4 and Reference Manual <i>Module</i> <i>Specifications</i>
to convert the signal for a fiber-optic network (for PROFIBUS-DP network only)	Optical Link Module	In the manual SIMATIC NET PROFIBUS Networks
to connect programming devices/OPs to the network	Programming device connecting cables (spur line)	Section 5.1.3

w.DataSheet4U.com

In This Section

This section describes the properties of the network components and information for their installation and handling. You will find the technical specifications of the RS 485 repeater in the Reference Manual *Module Specifications*.

Section	Contents	Page
5.2.1	PROFIBUS Bus Cable	5-16
5.2.2	Bus Connector	5-17
5.2.3	Plugging the Bus Connector into a Module	5-18
5.2.4	RS 485 Repeater	5-19

5.2.1 PROFIBUS Bus Cable

PROFIBUS Bus Cable

We can provide you with the following PROFIBUS bus cables:

PROFIBUS bus cable	6XV1 830-0AH10
PROFIBUS underground cable	6XV1 830-3AH10
PROFIBUS drum cable	6XV1 830-3BH10
PROFIBUS bus cable with PE sheath (for food and beverages industry)	6XV1 830-0BH10
PROFIBUS bus cable for festooning	6XV1 830-3CH10

Properties of the PROFIBUS Bus Cable

The PROFIBUS bus cable is a shielded twisted-pair cable with the following properties:

Properties	Values
Line impedance	Approx. 135 to 160 Ω (f = 3 to 20 MHz)
Loop resistance	\leq 115 Ω /km
Effective capacitance	30 nF/km
Attenuation	0.9 dB/100 m (f = 200 kHz)
Permissible cross-sectional core area	0.3 mm ² to 0.5 mm ²
Permissible cable diameter	8 mm ± 0.5 mm

www.DataSheet4U.com

Rules for Laying

When laying the PROFIBUS bus cable, you should take care not to:

- Twist the cable
- Stretch the cable
- · Compress the cable

You should also observe the following when laying the indoor bus cable (d_A = outer diameter of the cable):

vw.DataSheet4U.com

 Table 5-8
 Specifications for Installation of Indoor Bus Cable

Properties	Specifications
Bending radius (one-off)	\geq 80 mm (10×d _A)
Bending radius (multiple times)	\geq 160 mm (20×d _A)
Permissible temperature range during installation	– 5 °C to + 50 °C
Storage and stationary operating temperature range	– 30 °C to + 65 °C

5.2.2 Bus Connectors

Purpose of the Bus Connector

The bus connector is used to connect the PROFIBUS cable to the MPI or PROFIBUS-DP interface. You thus make the connections to further nodes.

The following bus connectors are available:

- Up to 12 Mbps
 - Without programming device socket (6ES7 972-0BA10-0XA0)
 - With programming device socket (6ES7 972-0BB10-0XA0)
- Up to 12 Mbps, angular outgoing cable
 - Without programming device socket (6ES7 972-0BA40-0XA0)
 - With programming device socket (6ES7 972-0BB40-0XA0)

No Application

You do **not** require the bus connector for:

- DP slaves in degree of protection IP 65 (e.g. ET 200C)
- RS 485 repeaters

5.2.3 Plugging the Bus Connector into a Module

Connecting the Bus Connector

Proceed as follows to connect the bus connector:

- 1. Plug the bus connector into the module.
- 2. Screw the bus connector tight on the module.
- 3. If the bus connector is installed at the start or end of a segment, you must switch on the terminating resistor (switch setting "ON") (see Figure 5-9).

Note

The bus connector 6ES7 972-0BA30-0XA0 does not have a terminating resistor. You cannot connect it at the beginning or end of a segment.

Please make sure that power is always supplied to the stations where the terminating resistor is fitted during start-up and normal operation.

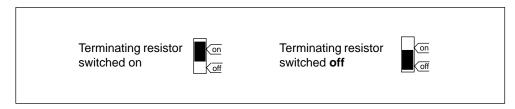


Figure 5-9 Bus Connector (6ES7 ...): Terminating Resistor Switched On and Off

ww.DataSheet4U.com

Disconnecting the Bus Connector

With a **looped-through network cable**, you can unplug the bus connector from the PROFIBUS-DP interface at any time, without interrupting data communication on the network.

Warning

A data communication error may occur on the network.

/w.DataSheet4U.com

A network segment must always be terminated at both ends with the terminating resistor. This is not the case, for example, if the power supply is not activated on the last slave with a bus connector. Since the bus connector draws power from the station, the terminating resistor has no effect.

Please make sure that power is always supplied to stations on which the terminating resistor is active.

5.2.4 RS 485 Repeater

The Purpose of the RS 485 Repeater

The RS 485 repeater amplifies data signals on bus lines and interconnects network segments.

You need an RS 485 repeater if:

- more than 32 nodes are connected to the network
- · a grounded segment is to be connected to a non-grounded segment, or
- the maximum cable length of a segment is exceeded.

Description of the RS 485 Repeater

You will find a description and the technical specifications of the RS 485 repeater in Chapter 7 of the *Module Specifications* Reference Manual.

Installation

You can mount the RS 485 repeater either on the S7-300 rail or on a 35-mm standard rail.

To mount it on the S7-300 rail, remove the slide at the rear of the RS 485 repeater as follows:

- 1. Insert a screwdriver under the edge of the latching element.
- 2. Move the screwdriver towards the rear of the module. Keep this position.
- 3. Move the slide upwards.

w.DataSheet4U.com

Figure 5-10 shows how the slide of the RS 485 repeater is removed.

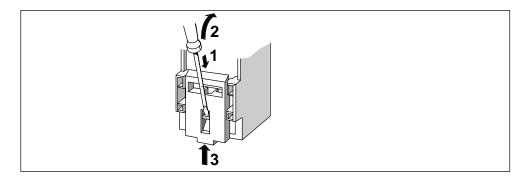


Figure 5-10 Removing the Slide on the RS 485 Repeater

After you have removed the slide, you can install the RS 485 repeater on the rail in the same way as the other S7-300 modules (see Chapter 2).

Use flexible cables with a cross-sectional core area of 0.25 mm^2 to 2.5 mm^2 (AWG 26 to 14) to connect the 24V DC power supply.

Wiring the Power Supply Module

Proceed as follows to wire the power supply of the RS 485 repeater:

- 1. Loosen the screws "M" and "PE".
- 2. Strip the insulation off the 24V DC power supply cable.
- 3. Connect the cable to terminals "L+" and "M" or "PE".

Terminal "M5.2"

Terminal "M5.2" is a terminal that you do not need to wire, as it is only used for servicing. The terminal "M5.2" supplies the reference potential. You need this reference potential to measure the voltage characteristic between terminals "A1" and "B1".

Connecting the PROFIBUS Bus Cable

You must connect the PROFIBUS bus cable to the RS 485 repeater as follows:

- 1. Cut the PROFIBUS bus cable to the length you require.
- 2. Strip the insulation off the PROFIBUS bus cable as shown in Figure 5-11.

The shield braiding must be turned up onto the cable. Only thus, the shielding point can later act as a strain relief and a shield support element.

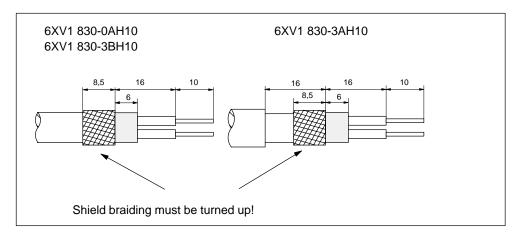


Figure 5-11 Lengths of the Stripped Insulation for Connection to the RS 485 Repeater

3. Connect the PROFIBUS bus cable to the RS 485 repeater:

Connect similar cores (green/red for PROFIBUS bus cable) to similar terminals A or B (for example, always connect a green wire to terminal A and a red wire to terminal B).

4. Tighten the pressure saddles, so that the shielding is bare under the pressure saddle.

ww.DataSheet4U.com

www.DataSheet4U.com

6

Commissioning

Software Prerequisites

ww.DataSheet4U.com

You must be familiar with *STEP 7* as of V 5.x to be able to use the complete range of functions of the CPUs listed in the chapter entitled *Important Information*.

If you have installed *STEP* 7 < V 5.x and you want to configure your system with these CPUs, you have the following alternatives:

• If you don't upgrade *STEP* 7 < V 5.x, you can use the relevant CPUs with low order numbers from the *STEP* 7 hardware catalogue.

Note that you can only use the functions of the previous CPU and of *STEP 7* for the new CPU.

Important: The CPUs 316-2 DP and 318-2 are not in the STEP 7 < V 5.x hardware catalogue.

- Upgrade *STEP 7*. Get information on update options from the Internet at our Customer Support site or ask your Siemens customer advisor.
- Install the new version of *STEP 7*.

Prerequisites for Commissioning

Prerequisite	See
The S7-300 must be installed	Chapter 2
The S7-300 must be wired	Chapter 4
In the case of a networked S7-300: Chapter 8 • MPI/PROFIBUS addresses must be set Chapter 8	
 Terminating resistors must be switched on (at the segment borders) 	

In This Chapter

Section	Contents	Page
6.1	Inserting the Memory Card (Not CPU 312 IFM/314 IFM)	6-3
6.2	Inserting the Backup Battery or Accumulator (Not CPU 312 IFM)	6-4
6.3	Connecting the Programming Device	6-5
6.4	Switching On a S7-300 for the First Time	6-10
6.5	Resetting the CPU Memory	6-11
6.6	Commissioning PROFIBUS-DP	6-16

www.DataSheet4U.com

6.1 Inserting and Changing the Memory Card (Not CPU 312 IFM/314 IFM)

Exception

You cannot insert a memory card with the CPU 312 IFM and 314 IFM.

Inserting/Changing a Memory Card

ww.DataSheet4U.com

1. Set the CPU to STOP mode.

Note

If you insert the memory card in a CPU mode other than STOP, the CPU will go into STOP mode and the STOP LED will flash at 1 second intervals to request a reset (see Section 6.5).

- 2. Is a memory card already inserted? If so: remove it.
- 3. Insert the new memory card in the CPU module shaft. Please note that the insertion marking on the memory card points to the marking on the CPU (see Figure 6-1).
- 4. Reset the CPU (see Section 6.5).

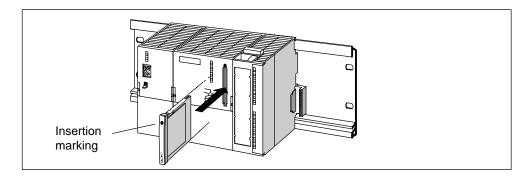


Figure 6-1 Inserting the Memory Card in the CPU

6.2 Inserting the Backup Battery/Accumulator (Not CPU 312 IFM)

Exceptions

A CPU 312 IFM doesn't have a backup battery or accumulator.

Since the **CPU 313** doesn't have a real-time clock, you don't need an accumulator for backup purposes (see Section 8.1.3).

/ww.DataSheet4U.com

Inserting the Backup Battery/Accumulator

You insert a backup battery or the accumulator in the CPU as follows:

Note

Only insert the backup battery in the CPU at power on.

If you insert the backup battery before power on, the CPU requests a reset.

- 1. Open the front door of the CPU.
- 2. Plug the battery or accumulator connector into the corresponding socket in the battery compartment of the CPU. The notch on the connector must point to the left.
- 3. Place the backup battery/accumulator into the battery compartment on the CPU.
- 4. Close the front door of the CPU.

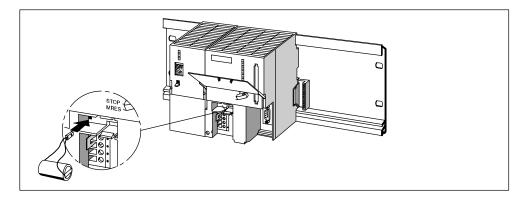


Figure 6-2 Inserting a Backup Battery in the CPUs 313/314

6.3 Connecting a Programming Device

Prerequisites

The programming device must be equipped with an integrated MPI interface or an MPI card in order to connect it to an MPI.

Cable length

ww.DataSheet4U.com

For information on possible cable lengths, refer to Section 5.1.3.

6.3.1 Connecting a Programming Device to an S7-300

You can connect the programming device to the MPI of the CPU via a preprepared programming device cable.

Alternatively, you can prepare the connecting cable yourself using the PROFIBUS bus cable and bus connectors (see Section 5.2.2).

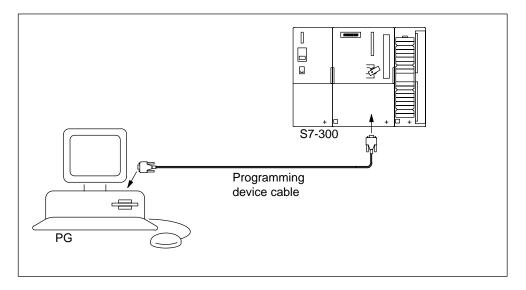


Figure 6-3 Connecting a Programming Device to an S7-300

6.3.2 Connecting the Programming Device to Several Nodes

Two Configuration Options

When connecting a programming device to several nodes, you must differentiate between two types of configuration:

- Programming device permanently installed in the MPI subnet
- Programming device connected for startup or maintenance purposes.

ww.DataSheet4U.com

Depending on which of these configurations you choose, connect the programming device to the other nodes as follows (see also Section 5.1.2).

Type of Configuration	Connection
Programming device permanently installed in the MPI subnet	Integrated directly in the MPI subnet
Programming device installed for commissioning or maintenance	Programming device connected to a node via a spur line

Permanently Installed Programming Device

You connect the programming device that is permanently installed in the MPI subnet directly to the other nodes in the MPI subnet via bus connectors in accordance with the rules described in Section 5.1.2).

Figure 6-4 shows two networked S7-300s. The two S7-300s are interconnected via bus connectors.

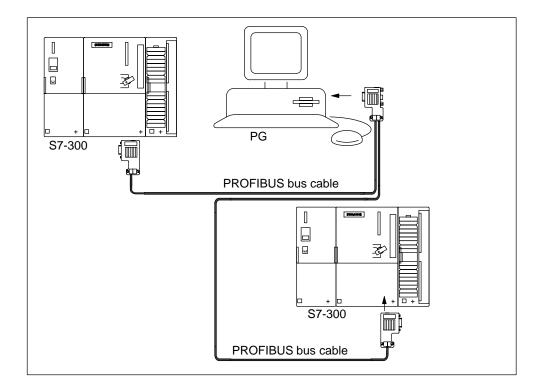


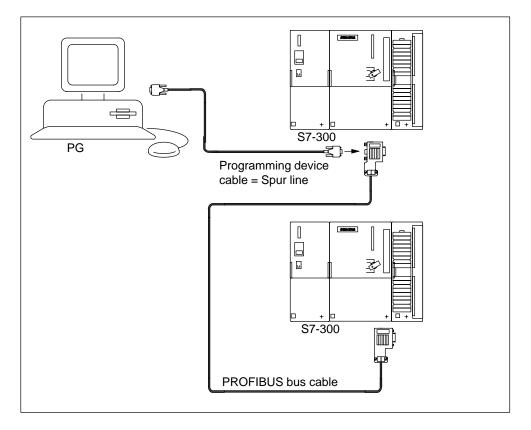
Figure 6-4 Connecting a Programming Device to Several S7-300s

ww.DataSheet4U.com

Connecting the Programming Device for Service Purposes: Recommendation for MPI Addresses

If there is no stationary programming device, we recommend the following:

In order to connect a programming device for service purposes to an MPI subnet with "unknown" nodes addresses, we recommend to set the following address on the service programming device:


- MPI address: 0
- Highest MPI address: 126.

Afterwards, use *STEP 7* to determine the highest MPI address in the MPI subnet and adjust the highest MPI address in the programming device to that of the MPI subnet.

Programming Device During Commissioning or Maintenance

For commissioning or maintenance purposes, you connect the programming device via a spur line to a node of the MPI subnet. The bus connector of this node must therefore be provided with a programming device socket (see also Section 5.2.2).

Figure 6-5 shows two S7-300s to which a programming device is connected.

ww.DataSheet4U.com

6.3.3 Connecting a Programming Device to Ungrounded Nodes of an MPI Subnet

Connecting a Programming Device to Ungrounded Nodes

If you have an ungrounded configuration of nodes in an MPI subnet or an ungrounded S7-300 (see Section 4.1.4), you may only connect an ungrounded programming device to the MPI subnet or the S7-300.

Connecting a Grounded Programming Device to the MPI

You want to operate the nodes in an ungrounded configuration (see Section 4.1.4). If the MPI at the programming device is grounded, you must connect an RS 485 repeater between the nodes and the programming device. You must connect the ungrounded nodes to bus segment 2, if you connect the programming device to bus segment 1 (terminals A1 B1) or the PG/OP interface (see Chapter 7 in the *Module Specifications*, Reference Manual).

Figure 6-6 shows the RS 485 repeater as an interface between a grounded and an ungrounded node in the MPI subnet.

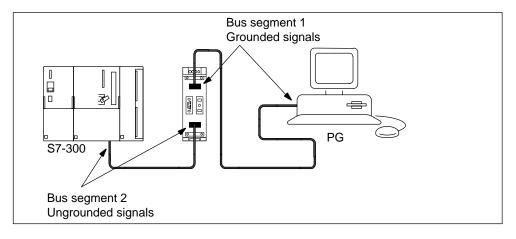


Figure 6-6 Programming Device Connected to an Ungrounded S7-300

6.4 Switching On a S7-300 for the First Time

Prerequisites

The S7-300 is installed and wired.

The mode selector should be in STOP mode.

Switching On for the First Time.

.DataSheet4U.com

Switch the PS 307 power supply module on.

Result:

- The 24V DC LED on the power supply module comes on.
- On the CPU
 - The 5V DC LED comes on.
 - The STOP LED flashes at one second intervals while the CPU carries out an automatic reset.
 - The STOP LED comes on after the memory reset.

If there is no backup battery in the CPU, the BATF LED comes on.

Note

If you insert a memory card and a backup battery before power on, the CPU also requests a memory reset after start-up.

6.5 Resetting the CPU

When Do You Reset the CPU Memory?

You must reset the CPU memory:

- Before you transfer a new (complete) user program to the CPU
- If the CPU requests a MRES with its STOP LED flashing at 1-second intervals Possible reasons for this request are listed in Table 6-1.

ww.DataSheet4U.com

Table 6-1 Possible Reasons for MRES Request by CPU

Reasons for MRES Request by CPU	Remarks
Wrong memory card has been plugged in.	not with CPU 312 IFM/314 IFM
RAM error in CPU	-
Working memory too small, that is not all blocks of the user program on a memory card could be loaded.	CPU with 5V-FEPROM memory card inserted: In these circumstances the CPU requests a one-off memory reset. After that, the CPU ignores the contents of
Attempt to load blocks with errors, for example if a wrong command has been programmed.	the memory card, enters the error reasons in the diagnostics buffer and goes to STOP. You can erase the contents of the 5V-FEPROM memory card in the CPU or enter new program.

How to Reset the Memory

There are two ways of resetting the CPU memory:

Memory Reset with the Mode	Memory Reset with Programming
Selector	Device
is described in this section.	is only possible in STOP mode of the CPU (see <i>STEP 7</i> -Online help).

Cold start in the CPU 318-2

In the CPU 318-2 you can also carry out a cold start instead of resetting the memory.

Cold start means:

- The data blocks in the working memory created by SFC 22 are deleted. The remaining data blocks have the preassigned value from the load memory.
- The process image as well as all times, counters and memory markers are reset irrespective of whether they were parameterized as retentive.
- The OB 102 is processed.
- Before the first command in OB 1, the process image of the inputs is read.

Resetting the CPU Memory or Carrying Out a Cold Start (CPU 318-2 only) with the Mode Selector

Step	Resetting the CPU Memory (Figure 6-7)	Carrying Out a Cold Start (Figure 6-8) CPU 318-2 Only
1	Turn the key to the STOP position	
2	Turn the key to the MRES position Hold the key in this position until the STOP LED comes on for the second time and remains on (this takes 3 seconds).	
3	Within 3 seconds you must turn the switch back to the MRES position and keep holding it until the STOP LED flashes (at 2 Hz). When the CPU has completed the reset, the STOP LED stops flashing and remains lit. The CPU has reset the memory.	Within 3 seconds you must turn the switch to the RUN position. During start-up the RUN LED flashes at 2 Hz.

Memory Reset

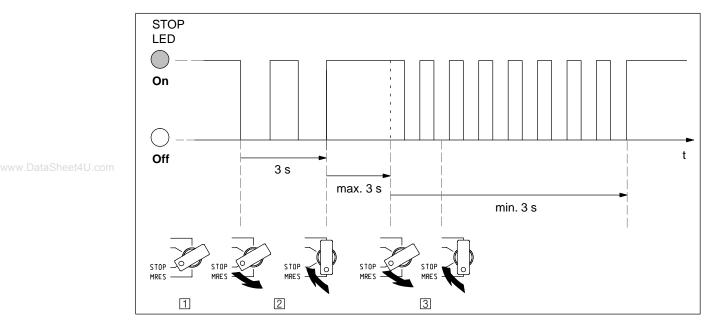


Figure 6-7 Switching Sequence for the Mode Selector for Resetting the CPU

Is the STOP LED Not Flashing During Memory Reset?

If the STOP LED doesn't flash during memory reset or other LEDs come on (with the exception of the BATF LED), you must repeat steps 2 and 3. If the CPU does not perform the reset this time, evaluate the diagnostic buffer of the CPU.

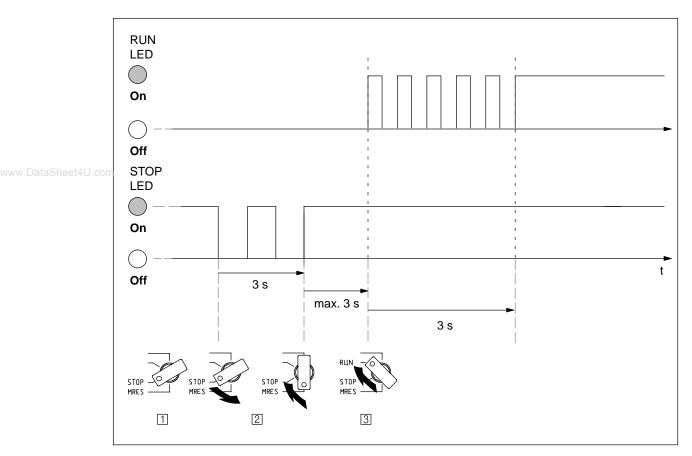


Figure 6-8 Switching Sequence for the Mode Selector for Cold Start (CPU 318-2 Only)

What Happens in the CPU During Memory Reset?

Table 6-2	Internal CPU Events on Memory Reset	
-----------	-------------------------------------	--

Event	CPU 313/314/315/315-2 DP/ 316-2 DP/318-2	CPU 312 IFM/314 IFM
CPU activities	 The CPU deletes the entire user progra (not the EPROM load memory). 	am in its RAM and in the load memory
	2. The CPU deletes the backup memory.	
	3. The CPU tests its own hardware.	
	 If you have inserted a memory card, the CPU copies the relevant contents of the memory card into the working memory. 	The CPU copies the relevant contents of the EPROM memory into the working memory
	Tip: If the CPU cannot copy the contents of the memory card and requests memory reset:	
	 Remove the memory card. 	
	 Reset the CPU memory. 	
	 Read the diagnostic buffer. 	
Memory contents after reset	The CPU memory is initialized to "0". If there is a memory card plugged in, the user program is loaded back into the RAM.	The user program is loaded back into the RAM from the integrated retentive EPROM of the CPU.
What's left?	The contents of the diagnostics buffer.	
	You can read the diagnostic buffer with the programming device (see the STEP 7 online help system).	
	The parameters of the MPI (MPI address and highest MPI address, transmission rate, configured MPI addresses of CPs/FMs in an S7-300).	
	The contents of the operating hours count	er (not for CPU 312 IFM).

Note: MPI Parameters

The following applies for the validity of the MPI parameters at memory reset:

Memory Reset	MPI Parameters
With memory card inserted (CPU 313/314/315/31x-2 DP)	located on the memory card or on the EPROM of the CPU are valid.
In the case of an integral EPROM (CPU 312 IFM/314 IFM)	
Without memory card inserted (CPU 313/314/315/31x-2 DP)	are retained and are valid.

ww.DataSheet4U.com

6.6 Commissioning the PROFIBUS-DP

In This Section

This section provides you with vital information on commissioning a PROFIBUS subnet with a CPU 31x-2 DP.

Section	Contents	Page
6.6.1	Commissioning the CPU 31x-2 DP as a DP Master	6-17
6.6.2	Commissioning the CPU 31x-2 DP as a DP Slave	6-18

Software Prerequisites

CPU 315-2 DP	As of STEP 7 V 3.1 As of COM PROFIBUS V 3.0
CPU 316-2 DP:	As of STEP 7 V 5.x
CPU 318-2	As of COM PROFIBUS V 5.0

6.6.1 Commissioning the CPU 31x-2 DP as a DP Master

Prerequisites for Commissioning

- The PROFIBUS subnet must be configured.
- The DP slaves must be prepared for operation (see relevant DP slave manual).

Commissioning

ww.DataSheet4U.com

To commission the CPU 31x-2 DP as a DP master in a PROFIBUS subnet, proceed as follows:

- 1. Load the PROFIBUS subnet configuration (preset configuration) created using *STEP 7* with the programming device in the CPU 31x-2 DP.
- 2. Switch on all of the DP slaves.
- 3. Switch the CPU 31x-2 DP from STOP mode to RUN mode.

Start-Up of the CPU 31x-2 DP as a DP Master

When the CPU 31x-2 DP is powered up, it checks the preset configuration of your DP master system against the actual configuration.

Tip: You can set a check time for the test in STEP 7.

If the preset configuration matches the actual configuration, the CPU switches to RUN.

If the preset configuration does not match the actual configuration, the response of the CPU depends on the setting of the parameter "Startup if preset configuration not equal to actual configuration":

Startup If Preset Configuration Not Equal to Actual Configuration = Yes (Default Setting)	Startup If Preset Configuration Not Equal to Actual Configuration = No
The CPU 31x-2 DP switches to RUN mode (BUSF LED flashes if any of	The CPU 31x-2 DP remains in STOP mode and the BUSF LED flashes after the time set parameter transfer to modules has elapsed.
the DP slaves cannot be addressed)	The flashing BUSF LED indicates that at least one DP slave is not addressable. In this case, you should check that all DP slaves are switched on, or you should read out the diagnostic buffer (see <i>STEP 7</i> User Manual).

Recognizing the Operational States of the DP Slave

In Chapter 9 you will find the dependencies of the operating modes of the CPU 31x-2 DP as a DP master and of a DP slave.

Tip: When starting up the CPU as a DP master, always program OBs 82 and 86. This allows you to identify and evaluate faults and interruptions in data transfer (for CPUs configured as DP slaves see also Table 9-3 on page 9-9).

6.6.2 Commissioning the CPU 31x-2 DP as a DP Slave

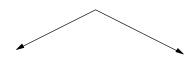
Prerequisites for Commissioning

• The CPU 31x-2 DP must be parameterized and configured as a DP slave (see Chapter 9).

When configuring it as a DP slave, you must already have decided on the following:

- Should functions such as programming and status/control be available via the DP interface?
- Is the DP master an S7 DP master or another DP master?
- All other DP slaves are parameterized and configured.
- The DP master is parameterized and configured.

Note that the CPU 31x-2 DP as DP slave provides address areas of an immediate memory for data interchange with the DP master. You use *STEP 7* to configure these address areas when configuring the CPU as a DP slave (see Chapter 9).


Commissioning

To commission the CPU 31x-2 DP as a DP slave in the PROFIBUS subnet, proceed as follows:

- 1. Switch the CPU 31x-2 DP from STOP mode to RUN.
- 2. Switch on all of the DP slaves.
- 3. Switch on the DP master.

The CPU 31x-2 DP as a DP Slave at Start-Up

When the CPU 31x-2 DP is switched to RUN, two operating mode transitions take place independently of each other:

The CPU switches from STOP mode to At the PROFIBUS-DP interface the RUN.

CPU starts data transfer with the DP master.

Recognizing the Operational Modes of the DP Master

In Chapter 9 you will find the dependencies of the operating modes of the CPU 31x-2 DP as a DP slave or as a DP master.

Tip: When commissioning the CPU as a DP slave, always program OBs 82 and 86. This allows you to identify and evaluate operating modes and interruptions in data transfer (see Table 9-8 on page 9-20).

www.DataSheet4U.com

7

Maintenance

Maintenance = Replacement

/ww.DataSheet4U.com

The S7-300 is a maintenance-free programmable controller.

Maintenance involves replacing the following parts:

- Backup battery/accumulator
- Modules
- Fuses on the digital output modules

In This Section

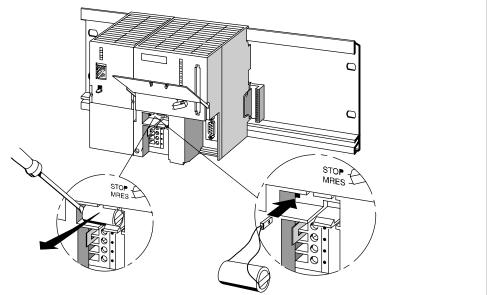
Section	Contents	Page
7.1	Changing the Backup Battery/Accumulator (Not CPU 312 IFM)	7-2
7.2	Replacing Modules	7-5
7.3	Replacing Fuses on 120/230V AC Digital Output Modules	7-9

7.1 Changing the Backup/Accumulator (Not CPU 312 IFM)

Replacing the Backup Battery/Accumulator

You should only change the backup battery or accumulator when the power is on, in order to prevent the loss of data from the internal user memory, and to keep the clock of the CPU running.

ww.DataSheet4U.com


Note

The data in the internal user memory are lost if you change the backup battery when the power is off.

Change the backup battery with the power switch in the ON position only!

To change the backup battery/accumulator proceed as follows:

Step	CPU 313/314	CPU 314 IFM/315/315-2 DP/ 316-2 DP/318-2	
1.	Open the front door of the CPU.		
2.	Pull the backup battery/accumulator out of the compartment with a screwdriver.	Pull the backup battery or accumulator out of the compartment by the cable	
3.	Plug the connector of the new backup battery/accumulator into the corresponding socket in the battery compartment of the CPU. The notch on the battery connector must point to the left!		
4.	Place the backup battery/accumulator into the battery compartment on the CPU.		
5.	Close the front door of the CPU		

Changing the Backup Battery in the CPU 313/314 Figure 7-1

How Often Is Replacement Necessary?

Backup battery: We recommend changing the backup battery every year.

Accumulator: The accumulator never needs changing.

Disposal

Backup batteries must be disposed of in keeping with the relevant national environment protection regulations/guidelines.

Storing Backup Batteries

Store backup batteries in a dry and cool place.

Backup batteries can be stored for five years.

Warning

If backup batteries are not treated properly, they can ignite, explode and cause severe burning.

Store backup batteries in a dry and cool place.

Rules for the Handling of Backup Batteries

To reduce the risk of danger when handling backup batteries, you must observe the following rules:

Warning

Improper handling of backup batteries can cause injuries and property damage. Backup batteries that are not handled properly can explode and cause severe

DataSheet40.com

burns. Do not

- recharge
- overheat
- burn
- puncture
- crush
- short-circuit backup batteries!

Rules for Handling the Accumulator

You must not charge the accumulator when not inserted in the CPU! The accumulator can only be charged by the CPU when the power is on.

7.2 Replacing Modules

Rules for Installation and Wiring

The following table tells you what you have to do when wiring, detaching and installing the S7-300 modules.

Rules Governing	Power Supply	CPU	SM/FM/CP
Blade width of screwdriver	3.5 mm (cylindrical model)		
Tightening torque			
Attaching modules to the rail	0.8 to 1.1		0.8 to to 1.1 Nm
Terminating cables	0.5 to 0.8 Nm		-
POWER OFF when replacing the	Yes		No
Operating mode of S7-300 when repla- cing the	_		STOP
Load voltage OFF when replacing the	Ye	es	Yes

Initial Situation

The module you want to replace is installed and wired. You want to install a new module of the same type.

Warning

If you remove or plug in the S7-300 modules during data transmission via the MPI, the data might be corrupted by disturbing pulses.

You must not plug in or remove any S7-300 modules during data transmission via the MPI!

If you are not sure whether any communications activities are taking place, pull the connector out of the MPI port.

ww.DataSheet4U.com

Removing a Module (SM/FM/CP)

Detach the module from the rail as follows:

Step	20-pin Front Connector	40-pin Front Connector	
1.	Set the CPU to the STOP mode with	h the key-operated switch.	
2.	Switch off the load voltage to the mo	odule.	
3.	Take out the labeling strip.		
4.	Open the front door.		
5.	Unlock the front connector and pull it off the module.		
	To do this, press down on the locking button (5) and, with the other hand, grip the front connector (5a) and pull it out.Remove the fixing screw from the middle of the front connector. Pull the front connector out while holding the grips.		
6.	Undo the module fixing screw(s).		
7.	Swing the module up and off the rail.		

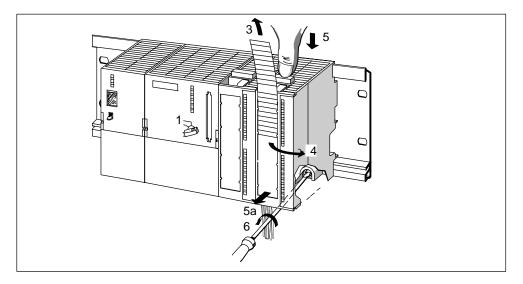


Figure 7-2 Unlocking the Front Connector and Detaching the Module from the Rail

ww.DataSheet4U.com

Removing the Front Connector Coding Key from the Module

Prior to installing the new module, you must remove the front connector coding key from the new module.

Reason: This part is already in the front connector (see Figure 7-3).

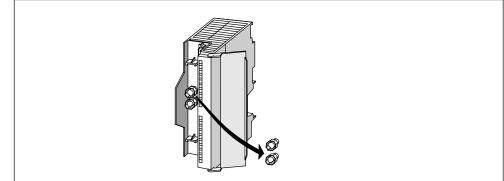


Figure 7-3 Removing the Front Connector Coding Key

Installing a New Module

Install the new module as follows:

- 1. Hook the new module of the same type onto the rail and swing it down into place.
- 2. Bolt the module tight.
- 3. Slip the labeling strip of the old module into its guide on the new module.

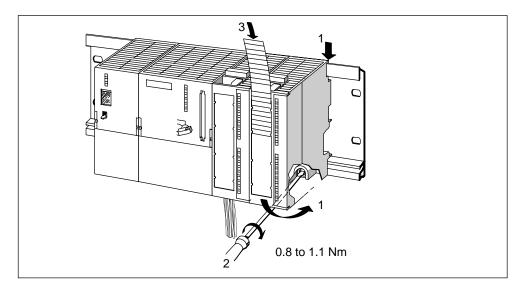


Figure 7-4 Installing a New Module

MAN DataShaat411 acres

Removing the Front Connector Coding Key from the Front Connector

If you want to wire a used front connector for another module, just remove the front connector coding key from the front connector by pressing it out of the front connector with a screwdriver. This upper part of the coding key must then be plugged back into the old module.

Putting a New Module into Service

Proceed as follows to put the new module into service:

- 1. Open the front door.
 - 2. Bring the front connector back into its operating position (see Section 4.3.3)

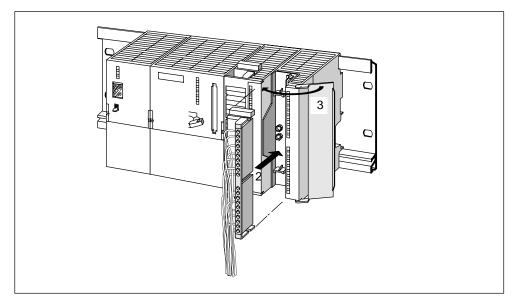


Figure 7-5 Plugging In the Front Connector

- 3. Close the front door.
- 4. Switch the load voltage back on.
- 5. Set the CPU again to RUN.

Performance of the S7-300 After Module Replacement

When you have replaced a module and no errors have occurred, the CPU enters the RUN mode. If the CPU stays in the STOP mode, you can have the cause of the error displayed with *STEP 7* (see *STEP 7 User Manual*).

7.3 Replacing Fuses on 120/230V AC Digital Output Modules

Fuses for Digital Outputs

Fuses are used for the individual channel groups of the digital outputs of the following digital output modules, to protect these against short circuit:

- SM 322 DO 16 × AC120V digital output module
- SM 322 DO 8 \times AC120/230V digital output module

www.DataSheet4U.com

Replacement Fuses

If you have to change fuses, you can use, for example, the following replacement fuses:

- 8 A, 250 V fuse
 - Wickmann 19 194-8 A
 - Schurter SP001.013
 - Littlefuse 217.008
- Fuse holder
 - Wickmann 19 653

Position of the Fuses

The digital output modules have 1 fuse per channel group. The fuses are located at the left side of the digital output module. Figure 7-6 shows you where to find the fuses on the digital output modules.

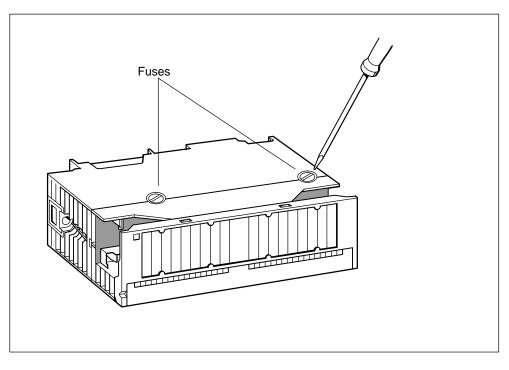


Figure 7-6 Location of the Fuses on Digital Output Modules

Changing Fuses

The fuses are located at the left side of the module. To change the fuses, proceed as follows:

- 1. Switch the CPU to STOP using the key switch.
- 2. Switch off the load voltage of the digital output module.
- 3. Remove the front connector from the digital output module.
- 4. Loosen the fixing screw of the digital output module.
- 5. Swing out the digital output module.
- 6. Remove the fuse holder from the digital output module.
- 7. Replace the fuse.
- 8. Screw the fuse holder back into the digital output module.
- 9. Install the digital output module (see Section 2.2.2).

8

CPUs

In This Section

www.DataSheet4U.con

Section	Contents	Page
8.1	Control and Display Elements	8-2
8.2	CPU Communication Options	8-11
8.3	Test Functions and Diagnostics	8-13
8.4	CPUs – Technical Specifications	8-17

8.1 Control and Display Elements

Figure 8-1 shows you the control and display elements of a CPU. The order of the elements in some CPUs might differ from the order shown in the figure below. The individual CPUs do not always have all the elements shown here. Table 8-1 shows you the differences.

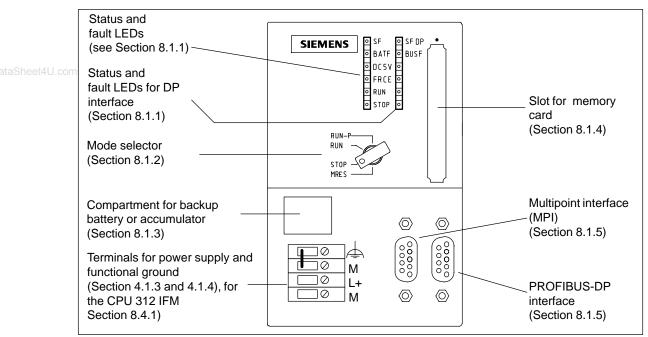


Figure 8-1 Control and Display Elements of the CPUs

Differences Between CPUs

Table 8-1 The Differences in Control and Display Elements Between CPUs

Element	312 IFM	313	314	314 IFM	315	315-2 DP	316-2 DP	318-2
LEDs for DP interface	No Yes							
Backup battery/ accumulator	No	No ac- cumu- lator						
Terminal connection for power supply	No; via front con- nector	Yes						
Memory card	No	Yes No Yes						
PROFIBUS-DP interface		No Yes						

8.1.1 Status and Fault Displays

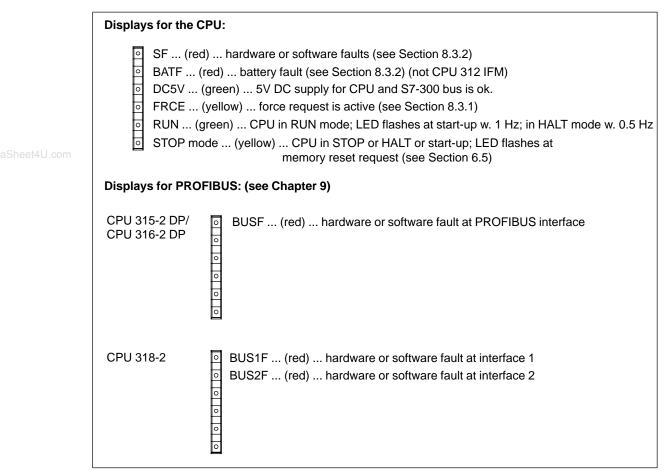


Figure 8-2 Status and Fault Displays of the CPUs

8.1.2 Mode Selector

The mode selector is the same in all CPUs.

Mode Selector Positions

The positions of the mode selector are explained in the order in which they appear on the CPU.

You will find detailed information on the modes of the CPU in the *STEP 7* online help system.

ww.DataSheet4U.com

Position	Description	Description
RUN-P	RUN	The CPU scans the user program.
	PROGRAM mode	The key cannot be taken out in this position.
RUN mode	RUN mode	The CPU scans the user program.
		The user program cannot be changed without password confirmation.
		The key can be removed in this position to prevent anyone changing the operating mode.
STOP mode	STOP mode	The CPU does not scan user programs.
		The key can be removed in this position to prevent anyone changing the operating mode.
MRES mode	Memory reset	Momentary-contact position of the mode selector for CPU memory reset (or a cold start as well in the case of the 318-2).
		Resetting the memory using the mode selector requires a special sequence of operations (see Section 6.5)

8.1.3 Backup Battery/Accumulator

Exceptions

CPU 312 IFM has no backup battery or accumulator. The CPU 313 does not require an accumulator since the accumulator does not back up the software clock.

Backup Battery or Accumulator?

Table 8-2 shows the differences in the backup provided by an accumulator and a backup battery.

Table 8-2	Using a Backup	Battery	or Accumulator
	Using a Dackup	Duttory	

Backup with	Backs up	Remarks	Backup Time
Accumula- tor	Real-time clock only	The accumulator is recharged when the power of the CPU is on.	120 hours (at 25°C)
		Note: The user program must be stored on the memory card or in the CPU 314 IFM in read-only memory.	60 hours (at 60°C) after 1 hour recharging
Backup battery	 User program (if not stored on memory card and protected against loss on power failure) More data areas in data blocks are to be retained than possible without battery The real-time clock 	Note: The CPU can retain some of the data without a battery. You only need a backup battery if you want to retain more data than this.	1 year

8.1.4 Memory Card

Exceptions

You cannot insert a memory card with the CPU 312 IFM and 314 IFM. These CPUs have an integrated read-only memory.

Purpose of the Memory Card

ww.DataSheet4U.com

With the memory card, you can expand the load memory of your CPU.

You can store the user program and the parameters that set the responses of the CPU and modules on the memory card. You can also save the firmware of your CPU on the memory card (not CPU 318-2).

If you store the user program on the memory card, it will remain in the CPU when the power is off even without a backup battery.

Available Memory Cards

The following memory cards are available:

Capacity	Туре	Remarks			
16 KB					
32 KB		The CPU supports the following functions:			
64 KB		 Loading of the user program on the module into the CPU 			
256 KB		In this function, the memory of the CPU			
128 KB	5 V FEPROM	is reset, the user program is loaded on to the memory card, and then from the			
512 KB		memory card to the CPU's working			
1 MB		memory.			
2 MB		 Copying of RAM to ROM (not with the CPU 318-2) 			
4 MB		,			
128 KB					
256 KB	5 V RAM				
512 KB		Only with the CPU 318-2			
1 MB					
2 MB	1				

Table 8-3 Memory Cards

8.1.5 MPI and PROFIBUS-DP Interface

CPU 312 IFM CPU 313 CPU 314 IFM CPU 314	CPU 315-2 DP CPU 316-2 DP		CPU 318-2		
MPI interface	MPI interface	PROFIBUS-DP interface	MPI/DP Interface	PROFIBUS-DP interface	
	© 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	© © © © © © © © © © © © © ©			
_	-	-	Reconfiguration as a PROFIBUS-DP interface is possible	_	

Table 8-4 CPU Interfaces

MPI Interface

The MPI is the interface of the CPU for the programming device/OP and for communication in an MPI subnet.

The typical (preset) transmission rate is 187.5 kbps (CPU 318-2: can be set up to 12 Mbps)

You must set 19.2 kbps to communicate with a S7-200.

PROFIBUS-DP Interface

CPUs with 2 interfaces offer you the PROFIBUS-DP interface, which allows them to be connected to a PROFIBUS-DP bus system. Transmission rates up to 12 Mbps are possible.

Connectable Devices

MPI	PROFIBUS-DP
Programming device/PC and OP	PG/PC and OP
 S7 programmable controller with MPI interface (S7-300, M7-300, S7-400, M7-400, C7-6xx) S7-200 (Note: only 19.2 kbps) 	 S7 programmable controllers with the PROFIBUS-DP interface (S7-200, S7-300, M7-300, S7-400, M7-400, C7-6xx)
	 Other DP masters and DP slaves

Only 19.2 Kbps for S7-200 in MPI Subnet

Note

At 19.2 kbps for communication with an S7-200, the following applies: – A **maximum of 8 nodes** (CPU, PG/OP, FM/CP with own MPI address) are allowed in one subnet. – You cannot carry out **any global data communication**.

ww.DataSheet4U.com

Please consult the S7-200 Manual for further information!

Removing and Inserting Modules in the MPI Subnet

You must not plug in or remove any modules (SM, FM, CP) of an S7-300 configuration while data are being transmitted over the MPI.

Warning

If you remove or plug in S7-300 modules (SM, FM, CP) during data transmission via the MPI, the data might be corrupted by disturbing pulses.

You must not plug in or remove modules (SM, FM, CP) of an S7-300 configuration during data transmission via the MPI!

Loss of GD packets Following Change in the MPI Subnet During Operation

Warning

Loss of data packets in the MPI subnet:

Connecting an additional CPU to the MPI subnet during operation can lead to loss of GD packets and to an increase in cycle time.

Remedy:

- 1. Disconnect the node to be connected from the supply.
- 2. Connect the node to the MPI subnet.
- 3. Switch the node on.

8.1.6 Clock and Runtime Meter

Table 8-5 shows the characteristics and functions of the clock for the various CPUs.

When you parameterize the CPU in *STEP 7*, you can also set functions such as synchronization and the correction factor(see the *STEP 7* online help system).

Characteristics	312 IFM	313	314	314 IFM	315	315-2 DP	316-2 DP	318-2
Туре	Software	vare clock Hardware clock (integrated "real-time clock")						
Manufacturer setting		DT#1994-01-01-00:00:00						
Backup	Not pos	sible		 Bac 	kup batt	ery		
				• Acc	umulato	r		
Operating hours counter	-				1			8
Number					0			0 to 7
Value range				0 to 3	2767 ho	urs		0 to 32767 hours
Accuracy	max de	viation p	er day:					
 With power supply switched on 0 to 60° C 					±9s			
 With power supply switched off 								
0° C				+	2s to -5	is		
25° C	±2s							
40° C					2s to -3	-		
60° C				+	2s to -7	S		

Table 8-5 Characteristics of the Clock of the CPUs

With the Power Off

The following table shows the clock behavior with the power of the CPU off, depending on the backup:

Backup	Clock Behavior
With backup battery	The clock continues to operate in POWER OFF (except the software clock).
With accumulator	The clock of the CPU continues to operate when the power is off for the backup time of the accumulator (except the software clock). When the power is on, the accumulator is recharged.
	In the event of backup failure, an error message is not generated. When the power comes on again, the clock continues at the clock time at which the power went off.
None	At POWER ON, the clock continues to operate using the clock time at which POWER OFF took place. Since the CPU is not backed up, the clock does not continue at POWER OFF.

ww.DataSheet4U.com

8.2 Communication Options of the CPU

The CPUs offer you the following communication options:

Table 8-6 CPU Communication Options

Communications	MPI	DP	Description
PG/OP-CPU	x	x	A CPU can maintain several on-line connections simultaneously to one or more programming devices or operator panels. One connection is reserved for a programming device and one for an operator panel.
Communication SFCs for non-configured S7 connections			These functions can be used to transfer data over the MPI subnet or within an S7-300. (You will find a list of the SFCs in Appendix C.1)
Via an MPI subnet	x	_	
• Within an S7-300	х	х	
Communication SFCs for configured S7 connections	x	x	With these S7 connections, the S7-300-CPUs are servers for S7-400 CPUs. That means the S7-400 CPUs can write data to or read data from the S7-300 CPUs.
Global data communication	х	-	The CPUs of the S7-300 can exchange global data.

Detailed Information

You can find out more about communication in the *STEP* 7 online help system and in the *Communication with SIMATIC* Manual.

Routing with 31x-2 CPUs

With the 31x-2 CPUs and STEP7 as of V 5.x you can reach S7 stations online beyond subnet borders with the programming device/PC and, for example, load user programs or a hardware configuration or execute testing and startup functions. To route via the DP interface, you must enable the "Programming, modifying and monitoring via the PROFIBUS" function when configuring and parameterizing the CPU.

The CPUs 315-2 DP and 316-2 DP provide you with additional connections for routing. In other words, routing does not occupy any other CPU connections. With the CPU 318-2 you must also consider the routing connections for the corresponding interface connections.

You can find a detailed description of routing in the STEP 7 online help system.

Global Data Communication with S7-300 CPUs

Below you will find important features of global data communication in the S7-300.

Send and Receive Conditions

For the communication via GD circuits, you should observe the following conditions:

- The following must apply for a GB packet sender: Scan rate_{sender} × cycle time_{sender} ≥ 60 ms (CPU 318-2: ≥ 10 ms)
- The following must apply for a GD packet receiver: Scan rate_{receiver} × cycle time_{receiver} < scan rate_{sender} × cycle time_{sender}

Non-observance of these conditions can lead to the loss of a GD packet. The reasons for this are:

- · The performance capability of the smallest CPU in the GD circuit
- Sending and receiving of global data is carried out asynchronously by the sender and receiver.

Loss of global data is displayed in the status field of a GD circuit if you have configured this with *STEP 7*.

Note

Please note the following in relation to global data communication: global data sent will not be acknowledged by the receiver!

The sender therefore receives no information on whether a receiver and which receiver has received the sent global data.

Send Cycles for Global Data

If you set "Send after every CPU cycle" in *STEP 7* (as of version 3.0) and the CPU has a short CPU cycle (< 60 ms), the operating system might overwrite an unsent CPU GD packet. **Tip:** The loss of global data is displayed in the status field of a GD circuit if you have configure this using *STEP 7*.

ww.DataSheet4U.com

8.3 Testing Functions and Diagnostics

The CPUs provide you with:

- Testing functions for commissioning
- Diagnostics via LEDs and via STEP 7

8.3.1 Testing Functions

ww.DataSheet4U.com

The CPUs offer you the following testing functions:

- Monitor Variables
- Modify Variables
- Forcen (note the differences between CPUs)
- Monitor block
- Set Breakpoint

You can find a detailed description of the testing functions in the *STEP 7* online help system.

Important with "Monitor Block"

The STEP 7 function "Monitor Block" increases the cycle time of the CPU.

In *STEP 7* you can set a maximum permissible increase in cycle time (not in the case of the CPU 318-2). To do this, you must set "Process Mode" when setting the CPU parameters in *STEP 7*.

Different Features of Forcing S7-300

Please note the different features of forcing in the different CPUs:

CPU 318-2	CPU 312 IFM to 316-2 DP
The variables of a user program with fixed preset values (force values) cannot be changed or overwritten by the user program.	The variables of a user program with fixed preset values (force values) can be changed or overwritten in the user program. (See Figure 8-3 on page 8-14)
The following can be variables: Inputs/outputs Peripheral I/Os Memory markers You can force up to 256 variables.	The following can be variables: Inputs/Outputs You can force up to 10 variables.

Forcing with the CPU 312 IFM to 316-2 DP:

Caution

The forced values in the process-image input table can be overwritten by write commands (for example T IB x, = I x.y, copy with SFC, etc.) as well as by peripheral read commands (for example L PIW x) in the user program or by PG/OP write functions!

Outputs initialized with forced values only return the forced value if the user program does not execute any write accesses to the outputs using peripheral write commands (e.g. T PQB x) and if no PG/OP functions write to these outputs!

Note: The interrupt response time may increase up to 5.5 ms if forcing is active.

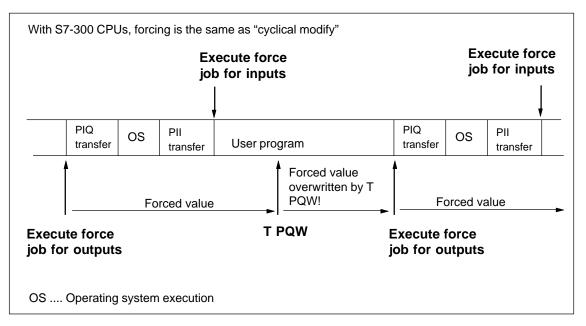


Figure 8-3 The Principle of Forcing with S7-300 CPUs (CPU 312 IFM to 316-2 DP)

ww.DataSheet4U.com

8.3.2 Diagnosis with LED Displays

In Table 8-7, only the LEDs relevant to the diagnosis of the CPU and S7-300 are listed. You will find the significance of the PROFIBUS-DP interface LEDs explained in Chapter 9.

LED		Description
SF	Comes on in the event of	Hardware faults Programming errors Parameter assignment errors Calculation errors Timing errors Faulty memory card Battery fault or no backup at power on I/O fault/error (external I/O only) Communication error
BATF	Comes on when	The backup battery is missing, faulty or not charged. Note: It also comes on when an accumulator is connected. The reason for this is that the user program is not backed up by the accumulator.
STOP	Comes on when	The CPU is not processing a user program
	Flashes when	The CPU requests a memory reset

Table 8-7 Diagnostic LEDs of the CPU

8.3.3 Diagnosis with STEP 7

Note

Please note that despite the extensive monitoring and error response functions provided, this is not a safety-oriented or fault-tolerant system.

If an error occurs, the CPU enters the cause of the error in the diagnostic buffer. You can read the diagnostic buffer using the programming device.

When an error occurs or there is an interrupt event, the CPU either goes into STOP mode or you can respond in the user program via error or interrupt OBs. You will find a detailed description of diagnosis with *STEP 7* in the *STEP 7* online help system.

In Appendix B you will find an overview of the following:

- · Which errors or interrupt events you can respond to with which OBs
- · Which OB you can program in which CPU

CPU Behavior When There Is No Error OB

If you have not programmed an error OB, the CPU reacts as follows:

CPU Goes to STOP with Missing		CPU F	Remains in RUN with Missing
OB 80	(Time-out)	OB 81	(Power supply fault)
OB 85	(Program execution error)		
OB 86	(Node failure in PROFIBUS-DP network)		
OB 87	(Communication error)		
OB 121	(Programming error)		
OB 122	(I/O direct access error)		

ww.DataSheet4U.com

CPU Behavior When There Is No Interrupt OB

If you have not programmed an interrupt OB, the CPU reacts as follows:

CPU Goes to STOP with Missing	CPU Remains in RUN with Missing
OB 10/11 (Time-of-day interrupt)	OB 32/35 (Watchdog interrupt)
OB 20/21 (Delay interrupt)	
OB 40/41 (Process interrupt)	
OB 82 (Diagnostic interrupt)	

Tip for OB 35 (CPU 318-2: and OB 32)

For the watchdog interrupt OB 35/32, you can set times from 1 ms upwards. Note: The smaller the selected watchdog interrupt period, the more likely watchdog interrupt errors will occur. You must take into account the operating system times of the CPU in question, the runtime of the user program and the extension of the cycle by active programming device functions, for example.

8.4 CPUs – Technical Specifications

In This Section

- You will find the technical specifications of the CPU.
- You will find the technical specifications of the integrated inputs/outputs of the CPU 312 IFM and 314 IFM.
- You will **not** find the features of the CPU 31x-2 DP as a DP master/DP slave. Refer to Chapter 9.

Section	Contents	Page
8.4.1	CPU 312 IFM	8-18
8.4.2	CPU 313	8-28
8.4.3	CPU 314	8-30
8.4.4	CPU 314 IFM	8-32
8.4.5	CPU 315	8-48
8.4.6	CPU 315-2 DP	8-50
8.4.7	CPU 316-2 DP	8-53
8.4.8	CPU 318-2	8-56

ww.DataSheet4U.com

8.4.1 CPU 312 IFM

Order No.

6ES7 312-5AC02-0AB0

Special Features

- Integrated inputs and outputs (wired up via a 20-pin front connector)
- No backup battery and therefore maintenance-free
- An S7-300 with CPU 312 IFM can be mounted only on one rack

Integrated Functions of the CPU 312 IFM

Integrated Functions	Description
Process interrupt	Interrupt inputs: Inputs parameterized in this way trigger a process interrupt at the corresponding signal edge.
	If you wish to use the digital inputs 124.6 to 125.1 as interrupt inputs, you must program these using <i>STEP 7</i> .
Counter	The CPU 312 IFM offers these special functions as an alternative at the digital inputs 124.6 to 125.1.
Frequency meter	For a description of the special functions "Counter" and "Frequency meter", please refer to the <i>Integrated Functions</i> Manual.

"Interrupt Inputs" of the CPU 312 IFM

If you wish to use the digital inputs 124.6 to 125.1 as interrupt inputs, you must program these in *STEP 7* in the CPU parameters.

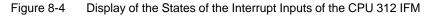
Note the following points:

- These digital inputs have a very low signal delay. At this interrupt input, the module recognizes pulses with a length as of approx. 10 to 50 μs. In order to prevent interference pulses from triggering interrupts, you must connect shielded cables to the activated interrupt inputs (see Section 4.3.4).
 Note: The interrupt-triggering pulse must be at least 50 μs in length.
- The input status associated with an interrupt in the process image input table or with L PIB always changes with the normal input delay of approx. 3 ms.

Start Information for OB 40

Table 8-8 describes the relevant temporary (TEMP) variables of OB 40 for the "interrupt inputs" of the CPU 312 IFM. The process interrupt OB 40 is described in the *System and Standard Functions* Reference Manual.

Table 8-8	Start Information for OB 40 for the Interrupt Inputs of the Integrated I/Os
-----------	---


Byte	Variable	Data Type		Description
6/7	OB40_MDL_ADDR	WORD	B#16#7C	Address of the interrupt triggering module (the CPU here)
8 on	OB40_POINT_ADDR	DWORD	See Figure 8-4	Signaling of the interrupt triggering integrated inputs

Display of the Interrupt Inputs

You can read which interrupt input has triggered a process interrupt from the variable OB40_POINT_ADDR. Figure 8-4 shows the allocation of the interrupt inputs to the bits of the double word.

Note: If interrupts of different inputs occur at very short intervals (< 100 μ s apart), more than one bit can be set at the same time. This means that several interrupts may cause OB 40 to start only once.

ww.DataSheet4U.com	31 30 5 4 3 2 1 0 Bit No. Reserved PRIN from I 124.6 PRIN from I 124.7 PRIN from I 125.0 PRIN from I 125.0
	PRIN from I 125.1

Front View

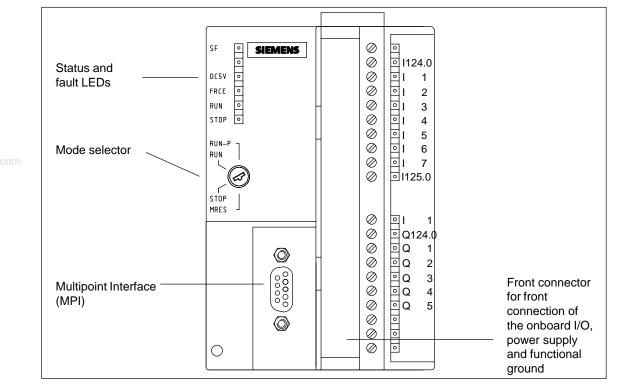


Figure 8-5 Front View of the CPU 312 IFM

Technical Specifications of the CPU 312 IFM

I	•		
	Memory		Blocks
	Working memory (integral) Load memory	6 KB	OBs See Appendix B max. size 8 KB
	• integral	20 KB RAM 20 KB EEPROM	FBs 32 max. size 8 KB
	Speed	approx. 0.7 ms per 1000 binary instructions	 FCs 32 max. size 8 KB DBs 127 (DB 0 reserved)
om	Bit memoriesAdjustable retentivityPreset	1024 MB 0 to MB 71 MB 0 to MB 15	max. size 8 KB SFCs See Appendix SFBs See Appendix Integrated functions
	Counter	32	Integrated functions
	Adjustable retentivityPreset	from C 0 to C 31 from C 0 to C 7	Counter 1 counter, counter frequency 10 kHz; 2 directional compa- rators
	Times (only updated in OB1!)	64	Frequency meter up to 10 kHz max.
	 Adjustable retentivity 	No	Functions
	Retentive data area	1 DB; max. 72 data bytes	Real-time clock Software clock
	Maximum sum of retentive data	72 bytes	Communication MPI
	Clock memories	8 (1 memory byte)	Guaranteed PG 1 connections
	Local dataIn allPer priority class	512 bytes 256 bytes	Guaranteed OP 1 connections
	Nesting depth	8 per priority class	Free connections for 2 PG/OP/configured S7 connections
	Digital inputs Digital outputs Analog inputs Analog outputs	128 + 10 integrated 128 + 6 integrated 32 32	Guaranteed 2 connections for non-configured S7
	Process image		connections
	 Integrated Inputs Outputs External 	124 to 127 I 124.0 to I 127.7 Q 124.0 to Q 127.7 0 to 32	 Global data communication No. of GD circuits 4 No. of send packets per 1 GD circuit
	Inputs Outputs	l 0.0 to l 31.7 Q 0.0 to Q 31.7	No. of receive packets 1 per GD circuit max. net data per 22 bytes
			packet Length of consistent 8 bytes data per packet
			No. of nodes max. 32 nodes
			Transmission rate 19.2; 187.5 kbps

Communication – Continued		Dimensions, Configurati	on
MPI		Installation dimensions $W \times H \times D$ (mm)	80 × 125 130
 Distance without repeaters 	50 m (54.5 yd.)	Weight	0.45 kg (15.75 oz)
with 2 repeaters with 10 repeaters in series	1100 m (1199 yd.) 9100 m (9919 yd.)	Configuration	max. 8 modules or 1 rack
MPI interface	Non-isolated	Norms, Test Specificatio	ns
Voltages, Currents		Norms and test	see <i>Module</i>
Rated voltage	24V DC	specifications	Specifications Reference Manual
Power input from 24V (without load current for outputs)	0.7 A (typical)		
Inrush current	8 A		
l ² t	0.4 A ² s		
External protection for supply lines	Circuit breaker; 10 A, type B or C		
Power losses	9 W (typical)		

Technical Specifications of the Special Inputs of the CPU 312 IFM

Module-Specific Data		Sensor Selection Data		
Number of inputs	4 I 124.6 to 125.1	Input voltage Rated value 	24V DC	
Cable length Shielded 	max. 100 m (109 yd.)	 For "1" signal I 125.0 and I 125.1 I 124.6 and I 124.7 For "0" signal 	15 to 30 V 15 to 30 V	
Voltages, Currents, Potent	ials	 For "0" signal 	–3 to 5 V	
Number of inputs that can be triggered simultaneously • (horizontal configuration)	4	Input current • For "1" signal I 125.0 and I 125.1 I 124.6 and I 124.7	min. 2 mA min. 6.5 mA	
up to 60 °C	4	Input delay time		
 (vertical configuration) 		• For "0" to "1"	max. 50 μs	
up to 40 °C	4	• For "1" to "0"	max. 50 μs	
Status, Interrupts; Diagnos	stics	Input characteristic		
Status display	1 green LED per channel	E 125.0 and E 125.1 E 124.6 and 124.7	to IEC 1131, type 1 to IEC 1131, type 1	
Interrupts Process interrupt 	Parameterizable	Connection of 2-wire BEROs	no	
Diagnostic functions	None	 Permissible quiescent current I 125.0 and I 125.1 I 124.6 and I 124.7 	max. 0.5 mA max. 2 mA	

Time, Frequency	
Internal conditioning time for	
Interrupt processing	max. 1.5 ms
Input frequency	≤ 10 kHz

Technical Specifications of the Digital Inputs of the CPU 312 IFM

w.DataSheet4U.com

Note

Alternatively, you can parameterize the inputs I 124.6 and I 124.7 as special inputs, in which case the technical specifications listed for the special inputs apply to the inputs I 124.6 and I 124.7.

Module-Specific Data		Status, Interrupts; Diagno	ostics
Number of inputs	8	Status display	1 green LED per channel
Cable lengthUnshieldedShielded	max. 600 m max. 1000 m	Interrupts Diagnostic functions	None None
Voltages, Currents, Potent	ials	Sensor Selection Data	
Number of inputs that can be triggered simultaneously • (horizontal configuration) up to 60 °C • (vertical configuration) up to 40 °C Galvanic isolation	8 8 8 No	Input voltage Rated value For "1" signal For "0" signal Input current For "1" signal Input delay time For "0" to "1" For "1" to "0" 	24V DC 11 to 30 V -3 to 5 V 7 mA (typical) 1.2 to 4.8 ms 1.2 to 4.8 ms
		Input characteristic Connection of 2-wire BEROs	to IEC 1131, Type Possible
		Permissible quiescent current	max. 2 mA

Module-Specific Data		Actuator Selection Data	
Number of outputs Cable length	6	Output voltage For "1" signal 	min. L + (– 0.8 V)
UnshieldedShielded	max. 600 m max. 1000 m	 Output current For "1" signal Rated value 	0.5 A
Voltages, Currents, Potentials Total current of outputs (per group) (horizontal		 Permissible range For "0" signal Residual current 	5 mA to 0.6 A max. 0.5 mA
 configuration) up to 40 °C up to 60 °C (vertical configuration) 		Load impedance range Lamp load Parallel connection of 2 outputs	48 Ω to 4 kΩ max. 5 W
up to 40 °C Galvanic isolation Status, Interrupts; Diagr	max. 3 A No	 For dual-channel triggering of a load For performance 	Possible Not possible
Status display	1 green LED per channel None	 increase Triggering of a digital input Switching frequency 	Possible
Diagnostic functions	None	 For resistive load For inductive load to IEC 947-5-1, DC 13 For lamp load 	max. 100 Hz max. 0.5 Hz max. 100 Hz
		Inductive breaking voltage limited internally to	30 V (typical)
		Short-citcuit protection of the output Response threshold 	yes, electronically timed 1 A (typical)

Technical Specifications of the Digital Outputs of the CPU 312 IFM

Terminal Assignment Diagram of the CPU 312 IFM

Figure 8-6 shows the terminal assignment of the CPU 312 IFM. You wire the integrated inputs/outputs of the CPU using a 20-pin front connector (see Section 4.3.3).

Caution

The CPU 312 IFM has no reverse polarity protection. If the poles are reversed, the integral outputs are defective but despite this, the CPU does not go to STOP and the status LEDs light up. In other words, the fault is not indicated.

ww.DataSheet4U.com

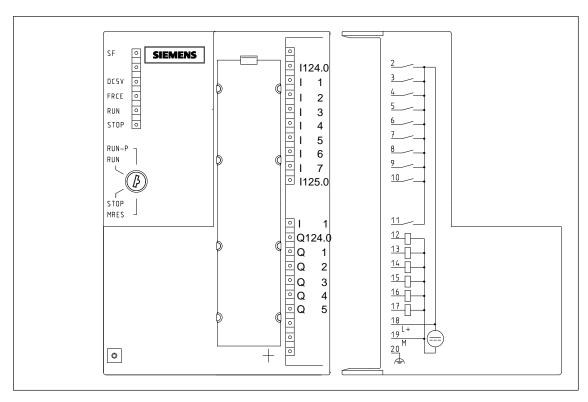


Figure 8-6 Terminal Assignment Diagram of the CPU 312 IFM

Grounded Configuration Only

You can use the CPU 312 IFM in a grounded configuration only. The functional ground is jumpered internally in the CPU 312 IFM with the M terminal (see Figure 8-7 on page 8-27).

Power Supply Connections

The power supply

- for CPU 312 IFM and
- for integrated I/Os

is connected to terminals 18 and 19 (see Figure 8-6).

Short-Circuit Characteristics

ww.DataSheet4U.com

If a short-circuit occurs at one of the integral outputs of the CPU 312 IFM, you must proceed as follows:

- 1. Switch the CPU 312 IFM to STOP or switch off the power supply.
- 2. Remove the cause of the short-circuit.
- 3. Switch the CPU 312 IFM back to RUN or switch the power supply back on.

Basic Circuit Diagram of the CPU 312 IFM

Figure 8-7 shows the basic circuit diagram of the CPU 312 IFM.

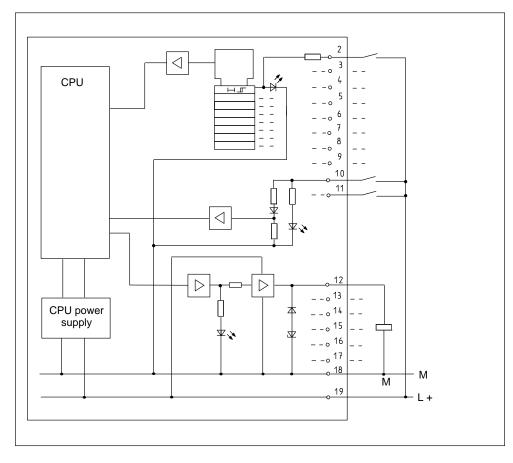


Figure 8-7 Basic Circuit Diagram of the CPU 312 IFM

8.4.2 CPU 313

Order No.

6ES7 313-1AD03-0AB0

Technical Specifications of the CPU 313

	roominoar opoomioano			
	Memory		Process image	0 to 127
vw.DataSheet4U.com	Working memory (integral) Load memory	12 KB	Inputs Outputs	l 0.0 to l 127.7 Q 0.0 to Q 127.7
	Integral	20 KB RAM	Blocks	
	Expandable	up to 4 MB FEPROM (memory card)	 OBs max. size FBs 	See Appendix B 8 KB 128
	Speed	approx. 0.7 ms per 1000 binary instructions	max. size • FCs max. size	8 KB 128 8 KB
	Bit memoriesAdjustable retentivityPreset	2048 MB 0 to MB 71 MB 0 to MB 15	 DBs max. size SFCs SFBs 	127 (DB 0 reserved) 8 KB See Appendix C See Appendix C
	Counter	64	Functions	
	Adjustable retentivity	from C 0 to C 63	Real-time clock	Software clock
	Preset Times (only updated in OB1!)	from C 0 to C 7 128	Operating hours counter • Number	1 0
	Adjustable retentivity	from T 0 to T 31	Value range	0 to 32767 hours
	Preset	No retentive times	Selectivity	1 hour
	Retentive data area	1 DB; max. 72 data bytes	Retentive Backup battery	Yes
	Maximum sum of retentive data	72 bytes	Backup time at 25 °C and uninterrupted backup of	min. 1 year
	Clock memories	8 (1 memory byte)	the CPU	
	Local data In all Per priority class 	1536 bytes 256 bytes	 Storage at 25 °C 	approx. 5 years
	Nesting depth	8 per priority class; 4 additional levels within a synchro- nous error OB		
	Digital inputs Digital outputs	128 128		
	Analog inputs	32		

Analog outputs

32

Communications		Voltages, Currents	
MPI		Rated voltage	24V DC
 Guaranteed PG connections 	1	Current drawn from 24 V (idle)	0.7 A (typical)
 Guaranteed OP connections 	1	Inrush current	8 A
Free connections for	2	l ² t	0.4 A ² s
PG/OP/configured S7 connections		External fusing for supply lines (recommendation)	Circuit breaker; 2 A type B or C
 Guaranteed connections for 	4	Power losses	8 W (typical)
non-configured S7 connections		Dimensions, Configuration	ו
Global data communication No. of GD circuits	4	Installation dimensions W \times H \times D (mm)	80 × 125 130
No. of send packets per GD circuit	1	Weight (without memory card and backup battery)	0.53 kg (15.75 oz)
No. of receive packets per GD circuit max. net data per	1 22 bytes	Configuration	max. 8 modules on 1 rack
packet		Norms, Test Specifications	6
Length of consistent data per packet	8 bytes	Norms, test specifications	see Module
Number of nodes	max. 32; 127 with repeaters		Specifications Reference Manual
Transmission rateDistance without repeaters	19.2; 187.5 kbps		
with 2 repeaters with 10 repeaters in series	50 m (54.5 yd.) 1100 m (1199 yd.) 9100 m (9919 yd.)		

MPI interface
 Non-isolated

S7-300 Programmable Controller Hardware and Installation EWA 4NEB 710 6084-02

8.4.3 CPU 314

Order No.

6ES7 314-1AE04-0AB0

Technical Specifications of the CPU 314

	Memory		Digital inputs	512
.DataSheet4U.com	Working memory (integral)	24 KB	Digital outputs	512
	Load memory		Analog inputs	64
	 Integral 	40 KB RAM	Analog outputs	64
	Expandable	up to 4 MB	Process image	0 to 127
		FEPROM (memory card)	Inputs Outputs	l 0.0 to l 127.7 Q 0.0 to Q 127.7
	Speed	approx. 0.3 ms per	Blocks	
		1000 binary instructions	OBs max. size	See Appendix B 8 KB
	Bit memories	2048	• FBs	128
	 Adjustable retentivity 	MB 0 to MB 255	max. size	8 KB
			• FCs	128
	Preset	MB 0 to MB 15	max. size	8 KB
	Counter	64	• DBs	127 (DB0 reserved
	 Adjustable retentivity 	from C 0 to C 63	max. size	8 KB
	Preset	from C 0 to C 7	SFCs	See Appendix
	Times (only undeted in	128	SFBs	See Appendix
	Times (only updated in OB1!)	120	Functions	
	 Adjustable retentivity 	from T 0 to T 127	Real-time clock	Hardware clock
	Preset	No retentive times	Operating hours counter	1
	Retentive data area	8 DBs;	Number	0
	max. 4096 data • Value rang		Value range	0 to 32767 hours
		Selectivity	1 hour	
	Maximum sum of retentive data	4736 bytes	Retentive	Yes
	Clock memories	8 (1 memory byte)	Backup batteryBackup time	min. 1 year
	Local data		at 25 °C and	
	• In all	1536 bytes	uninterrupted backup of the CPU	
	 Per priority class 	ss 256 bytes		_
	Nesting depth	8 per priority class; 4 additional levels within a synchro- nous error OB	 Storage at 25 °C 	approx. 5 years

Buffer time of clock with ac-		Voltages, Currents	
cumulator at 0°C	4 weeks (typical)	Rated voltage	24V DC
at 25°C at 40°C	4 weeks (typical) 3 weeks (typical)	Current drawn from 24 V (idle)	0.7 A (typical)
at 60°C	1 week (typical)	Inrush current	8 A
Battery charging time	1 h (typical)	l ² t	0.4 A ² s
Communications		External fusing for supply	Circuit breaker; 2 A,
MPI		lines (recommendation)	type B or C
 Guaranteed PG connections 	1	Power losses	8 W (typical)
Guaranteed OP	1	Dimensions, Configuration	n
 connections Free connections for PG/OP/configured S7 connections 	2	Installation dimensions $W \times H \times D$ (mm)	80 × 125 × 130
 Guaranteed connections for 	8	Weight (without memory card and backup battery)	0.53 kg (15.75 oz)
non-configured S7 connections		Configuration	max. 32 modules or 4 racks
Global data		Norms, Test Specification	S
communication No. of GD circuits	4	Norms, test specifications	see Module
No. of send packets per GD circuit	1		Specifications Reference Manual
No. of receive packets per GD circuit	1		
max. net data per packet	22 bytes		
Length of consistent data per packet	8 bytes		
Number of nodes	max. 32; 127 with repeaters		
Transmission rateDistance	19.2; 187.5 kbps		
 Distance without repeaters with 2 repeaters with 10 repeaters in series 	50 m (54.5 yd.) 1100 m (1199 yd.) 9100 m (9919 yd.)		
MPI interface	Non-isolated		

8.4.4 CPU 314 IFM

Order No.

6ES7 314-5AE03-0AB0

Special Features

• Integrated inputs/outputs (wired up via 40-pin front connectors)

ww.DataSheet4U.com

You can find detailed information on analog value processing and on connecting measuring sensors and loads/actuators to the analog inputs/outputs in the *Module Specifications* Reference Manual. Figures 8-13 and 8-14 on page 8-47 show wiring examples.

Integrated Functions of the CPU 314 IFM

Integrated functions	Description	
Process interrupt	Interrupt inputs: Inputs parameterized in this way trigger a process interrupt at the corresponding signal edge.	
	If you wish to use the digital inputs 126.0 to 126.3 as interrupt inputs, you must program these using <i>STEP 7</i> .	
	Note: To prevent the interrupt response times of the CPU being increased, you should address the analog inputs of the CPU separately in the user program using L PIW. Double-word addressing can increase the access times by up to $200 \ \mu s!$	
Counter	The CPU 314 IFM offers these special functions as an alternative at digital	
Frequency meter	inputs 126.0 to 126.3. For a description of these special functions, please refer to the <i>Integrated Functions</i> Manual.	
Counter A/B		
Positioning		
CONT_C	These functions are not restricted to specific inputs and outputs of the CPU 314	
CONT_S	IFM. For a description of these functions, please refer to the <i>System and Standard Functions</i> Reference Manual.	
PULSEGEN		

"Interrupt Inputs" of the CPU 314 IFM

If you wish to use the digital inputs 126.0 to 126.4 as interrupt inputs, you must program these in *STEP 7* in the CPU parameters.

Note the following points:

These digital inputs have a very low signal delay. At this interrupt input, the module recognizes pulses with a length as of approx. 10 to 50 μ s. In order to prevent interference pulses from triggering interrupts, you must connect shielded cables to the activated interrupt inputs (see Section 4.3.4).

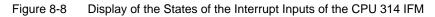
Note: The interrupt-triggering pulse must be at least 50 μ s in length.

ww.DataSheet4U.com

Start Information for OB 40

Table 8-8 describes the relevant temporary (TEMP) variables of OB 40 for the "interrupt inputs" of CPU 314 IFM. The process interrupt OB 40 is described in the *System and Standard Functions* Reference Manual.

Table 8-9 Start Information for OB 40 for the Interrupt Inputs for the Integrated I/O


Byte	Variable	Data Type	Description	
6/7	OB40_MDL_ADDR	WORD	B#16#7C	Address of the interrupt triggering module (the CPU here)
8 on	OB40_POINT_ADDR	DWORD	See Figure 8-8	Signaling of the interrupt triggering integrated inputs

Display of the Interrupt Inputs

You can read which interrupt input has triggered a process interrupt from the variable OB40_POINT_ADDR. Figure 8-8 shows the allocation of the interrupt inputs to the bits of the double word.

Note: If interrupts of different inputs occur at very short intervals (< 100 μ s apart), several bits can be set at the same time. This means that more than one interrupt may cause OB 40 to start only once.

vw.DataSheet4U.com	31 30 5 4 3 2 1 0 Bit No.
	Reserved PRIN from I 126.0 PRIN from I 126.1 PRIN from I 126.2 PRIN from I 126.3
	PRIN: Process interrupt

Front View of the CPU 314 IFM

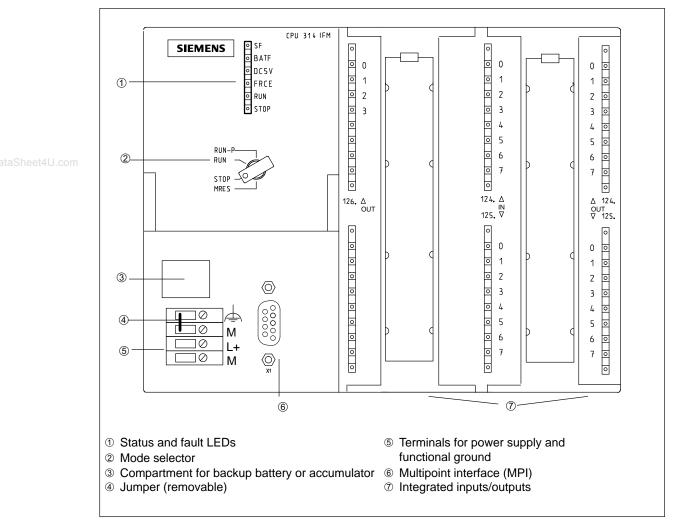


Figure 8-9 Front View of the CPU 314 IFM

Technical Specifications of the CPU 314 IFM

Memory		External	0 to123
Working memory (integral)	32 KB	Inputs	E 0.0 to E 123.7
Load memory	52 ND	Outputs	A 0.0 to A 123.7
Integral	48 KB RAM	Blocks	
integral	48 KB FEPROM	• OBs	See Appendix B
Speed	approx 0.3 ms per	max. size	8 KB
Speed	approx. 0.3 ms per 1000 binary	 FBs max. size 	128 8 KB
	instructions	• FCs	128
Bit memories	2048	max. size	8 KB
Adjustable retentivity	MB 0 to MB 143	DBs max. size	127 (DB 0 reser- ved)
Preset	MB 0 to MB 15	SFCs	8 KB
Counter	64	SFBs	See Appendix C
Adjustable retentivity	from C 0 to C 63		See Appendix C
 Preset 	from C 0 to C 7	Integrated functions	
Times (only updated in OB1!)	128	Counter	1 or 2 counters, counting fre- quency 10 kHz;
 Adjustable retentivity 	from T 0 to T 71		2 directional compa-
Preset	No retentive times		rators
Retentive data area	2 DBs; max. 144 data bytes	Frequency meterPositioning	up to 10 kHz max. Channel 1
	(in total)	Functions	
Maximum sum of retentive data	144 bytes	Real-time clock	Hardware clock
Clock memories	8 (1 memory byte)	Operating hours counterNumber	1 0
Local data		Value range	0 to 32767 hours
• In all	1536 bytes	Selectivity	1 hour
 Per priority class 	256 bytes	Retentive	Yes
Nesting depth	8 per priority class; 4 additional levels within a synchro- nous error OB	 Backup battery Backup time at 25 °C and uninterrupted backup of 	min. 1 year
Digital inputs Digital outputs	496 + 20 integrated (of which 4 are spe- cial inputs) 496 + 16 integrated	 Storage at 25 °C 	approx. 5 years
Analog inputs Analog outputs	64 + 4 integrated 64 + 1 integrated	Buffer time of clock with ac- cumulator	
Process image	J	at 0°C	typ. 4 weeks
C C	4044 407	at 25°C	typ. 4 weeks
 Integrated Inputs 	124 to 127 E 124.0 to E 127.7	at 40°C	typ. 3 weeks
Outputs	A 124.0 to A 127.7	at 60°C	typ. 1 week
		Battery charging time	1 h (typical)

Communications MPI		Voltages, Currents	
		Rated voltage	24V DC
 Guaranteed PG connections 	1	Current drawn from 24 V (idle)	1.0 A (typical)
 Guaranteed OP connections 	1	Inrush current	8 A
 Free connections for PG/OP/configured S7 connections 	2	l ² t External fusing for supply	0.4 A ² s Circuit breaker; 2 A
 Guaranteed connections for non-configured S7 	8	lines (recommendation) PG supply on MPI (15 to 30V DC)	type B or C max. 200 mA
connections		Power losses	16 W (typical)
 Global data communication 		Dimensions, Configuration	n
No. of GD circuits No. of send packets per	4 1	Installation dimensions $W \times H \times D$ (mm)	160 × 125 × 130
GD circuit No. of receive packets per GD circuit	1	Weight (without memory card and backup battery)	0.9 kg (15.75 oz)
max. net data per packet	22 bytes	Configuration	max. 31 modules of 4 racks
Length of consistent data per packet	8 bytes	Norms, Test Specification	S
Number of nodes	max. 32; 127 with repeaters	Norms, test specifications	see Module Specifications
Transmission rateDistance	19.2; 187.5 kbps		Reference Manual
without repeaters with 2 repeaters with 10 repeaters in series	50 m (54.5 yd.) 1100 m (1199 yd.) 9100 m (9919 yd.)		
MPI Interface	Non-isolated		

Characteristic Features of the Integrated Inputs and Outputs of the CPU 314 IFM

Inputs/Outputs	Characteristics		
Analog inputs	Voltage inputs ± ±10 V	All information required for	
	Current inputs ±20 mA	 Analog value display and 	
	Resolution 11 bits + sign bit	Connecting measuring sensors	
	Galvanically isolated	 and loads/actuators to the analog inputs and outputs 	
Analog output	Voltage output ± ±10 V	can be found in the <i>Module</i>	
om	• Current output ±20 mA	Specifications Reference Manual.	
	Resolution 11 bits + sign bit		
	Galvanically isolated		
Digital inputs	Special Inputs (I 126.0 to I 126.3)	"Standard" Inputs	
	Input frequency up to 10 kHz	Galvanically isolated	
	Non-isolated		
	Rated input voltage 24V DC		
	Suitable for switch and 2-wire pro	ximity switches (BEROs)	
Digital outputs	Output current 0.5 A		
	Rated load voltage 24V DC		
	Galvanically isolated		
	Suitable for solenoid valves and E	OC contactors	

Table 8-10 Characteristic Features of the Integrated Inputs and Outputs of the CPU 314 IFM

Module-Specific Data		Interference Suppression,	Error Limits, Conti-
Number of inputs	4	nued	
Cable length Shielded 	max. 100 m (109 yd.)	Basic error limits (operational limit at 25 °C, relative to input range) • Voltage input	± 0.9 %
Voltages, Currents, Potent	ials	Current input	± 0.8 %
Galvanic isolation		Temperature error (related	± 0.01 %/K
 between channels and backplane bus 	Yes	to input range) Linearity error (related to	± 0.06 %
Permissible potential difference		input range)	
 between inputs and M_{ANA} (U_{CM}) 	1.0V DC	Repeatability (in the settled state at 25 °C, relative to input range)	± 0.06 %
 between M_{ANA} and M_{internal} (U_{ISO}) 	75V DC 60V AC	Status, Interrupts; Diagnos	tics
Insulation tested at	500V AC	Interrupts	None
Analog Value Generation	300V DC	Diagnostic functions	None
		Sensor Selection Data	
Measuring principle Conversion time/resolution	Momentary value encoding (successive approximation)	Input ranges (rated value)/input resistance	
(per channel)		Voltage	\pm 10 V/50 k Ω
Basic conversion time		Current	\pm 20 mA/105.5 Ω
 Resolution (inc. overdrive range) 	100 μs 11 bits + sign bit	Permissible input voltage for voltage input (destruction limit)	max. 30 V continuous; 38 V for max. 1 s
Interference Suppression,	Error Limits		(pulse duty factor 1:20)
Interference voltage suppression • Common-mode interference (U _{CM} < 1.0	> 40 dB	Permissible input current for current input (destruction limit)	
V)	> 60 dB	Connection of signal encoders	Dessible
inputs		 For voltage measurement 	Possible
Operational error limits (throughout temperature range, relative to input		For current measurement	
range)		as 2-wire measurement transducer	Not possible
Voltage inputCurrent input	± 1.0 % ± 1.0 %	as 4-wire measurement transducer	Possible

Technical Specifications of the Analog Inputs of the CPU 314 IFM

Module-Specific Data		Output ripple; Range 0 to	\pm 0.05 %
Number of outputs	1	50 kHz (relative to output range)	
Cable length		Status, Interrupts; Diagnos	stics
Shielded	max. 100 m (109 yd.)	Interrupts	None
Voltages, Currents, Potent		Diagnostic functions	None
Galvanic isolation		Actuator Selection Data	
Between channels and backplane bus	Yes	Output ranges (rated values)	
Permissible potential difference		VoltageCurrent	± 10 V ± 20 mA
 Between M_{ANA} and M_{internal} (U_{ISO}) 	75V DC 60V AC	Load impedance	min 20k0
Insulation tested at	500V DC	For voltage output capacitive load	min. 2.0 kΩ max. 0.1 μF
Analog Value Generation		For current output	max. 300 Ω
		inductive load	max. 0.1 mH
Resolution (incl. overdrive range)	11 bits + sign bit	Voltage output	
Conversion time	40 μs	Short-circuit protection	Yes
Settling time		Short-circuit current	max. 40 mA
For resistive load	0.6 ms	Current output	
For capacitive load	1.0 ms	Idle voltage	max. 16 V
For inductive load	0.5 ms	Destruction limit for	
Connection of substitute values	No	externally applied voltages/currents	
Interference Suppression,	Error Limits	Voltages at the output	max. ± 15 V
Operational error limits (throughout temperature range, relative to output range)		with ref. to M _{ANA}	continuous; \pm 15 V for max. 1 s (pulse duty factor 1:20)
Voltage output	± 1.0 %	Current	max. 30 mA
Current output	± 1.0 %	Connection of actuators	
Basic error limit (operational		For voltage output	
limit at 25 °C, relative to		2-wire connection	Possible
output range)		4-wire connection	Not possible
Voltage output	± 0.8 %	For current output	
Current output	± 0.9 %	2-wire connection	Possible
Temperature error (relative to output range)	± 0.01 %/K		
Linearity error (relative to output range)	± 0.06 %		
Repeat accuracy (in the settled state at 25 °C,	± 0.05 %		

Technical Specifications of the Analog Output of the CPU 314 IFM

relative to output range)

Module-Specific Data		Sensor Selection Data	Sensor Selection Data	
Number of inputs	4	Input voltage		
	I 126.0 to 126.3	Rated value	24V DC	
Cable length Shielded 	max. 100 m (109 yd.)	• For "1" signal	11 to 30 V or 18 to 30 V for angle step encoder for in function	
Voltages, Currents, Potent	ials		"Positioning"	
Number of inputs that can	4	For "0" signal	–3 to 5 V	
be triggered simultaneously		Input current		
 (horizontal configuration) 		• For "1" signal	6.5 mA (typical)	
up to 60 °C	4	Input delay time		
• (vertical configuration)		• For "0" to "1"	< 50 µs (17 ms typical)	
up to 40 °C Status, Interrupts; Diagnos	4 stics	• For "1" to "0"	< 50 µs (20 ms typical)	
Status display	1 green LED per	Input characteristic	to IEC 1131, Type 2	
Interrupts	channel	Connection of 2-wire BEROs	Possible	
 Process interrupt 	Parameterizable	Permissible quiescent	max. 2 mA	
Diagnostic functions	None	current		
		Time, Frequency		
		Internal conditioning time for		
		Interrupt processing	max. 1.2 ms	
		Input frequency	\leq 10 kHz	

Technical Specifications of the Special Inputs of the CPU 314 IFM

Module-Specific Data		Status, Interrupts; Diagnostics	
Number of inputs	16	Status display	1 green LED pe channel
Cable lengthUnshielded	max. 600 m	Interrupts	None
Shielded	max. 1000 m	Diagnostic functions	None
Voltages, Currents, Potenti	als	Sensor Selection Data	
Rated load current L+	24V DC	Input voltage	
Polarity reversal	Yes	Rated value	24V DC
protection		 For "1" signal 	11 to 30 V
Number of inputs that can be triggered simultaneously	16	• For "0" signal	–3 to 5 V
 (horizontal configuration) 		Input current For "1" signal 	7 mA (typical)
up to 60 °C	16	Input delay time	
(vertical configuration)		• For "0" to "1"	1.2 to 4.8 ms
up to 40 °C	16	• For "1" to "0"	1.2 to 4.8 ms
Galvanic isolation		Input characteristic	to IEC 1131, Typ
 Between channels and backplane bus 	Yes	Connection of 2-wire BEROs	Possible
Permissible potential difference		Permissible quiescent current	max. 2 mA
 Between different circuits 	75V DC 60V AC		
Insulation tested at	500V DC		
Current consumption			
 From L+ supply 	max. 40 mA		

Technical Specifications of the Digital Inputs of the CPU 314 IFM

Technical Specifications of the Digital Outputs of the CPU 314 IFM

Remarks

When the supply voltage is switched on a pulse occurs on the digital outputs! This can be $50 \ \mu$ s long within the permissible output current range. You must not, therefore, use the digital outputs to trigger high-speed counters.

Module-Specific Data		Actuator Selection Data		
Number of outputs	16	Output voltage		
Cable length		For "1" signal	min. L + (– 0.8 V)	
Unshielded	max. 600 m	Output current		
 Shielded 	max. 1000 m	For "1" signal		
Voltages, Currents, Potent	tials	Rated value	0.5 A	
Rated load current L+	24V DC	Permissible range	5 mA to 0.6 A	
 Polarity reversal protection 	No	• For "0" signal (residual current)	max. 0.5 mA	
Total current of outputs		Load impedance range	48 Ω to 4 k Ω	
(per group)		Lamp load	max. 5 W	
 (horizontal configuration) 		Parallel connection of 2 outputs		
up to 40 °C	max. 4 A	For dual-channel	Possible, only	
up to 60 °C	max. 2 A	triggering of a load	outputs of the same	
 (vertical configuration) 		For performance	group	
up to 40 °C	max. 2 A	For performance increase	Not possible	
Galvanic isolation		Triggering of a digital input	Possible	
 Between channels and backplane bus 	Yes		1 0351010	
 Between the channels 	Yes	Switching frequencyFor resistive load	max. 100 Hz	
in groups of	8	 For resistive load For inductive load to 	max. 100 Hz max. 0.5 Hz	
	0	IEC 947-5-1, DC 13	max. 0.5 mz	
Permissible potential difference		For lamp load	max. 100 Hz	
 Between different circuits 	75V DC 60V AC	Inductive breaking voltage limited internally to	L+ (– 48 V) typical	
Insulation tested at	500V DC	Short-citcuit protection of	yes, electronically	
Current consumption		the output	timed	
 From L+ supply (no-load) 	max. 100 mA	Response threshold	1 A (typical)	
Status, Interrupts; Diagno	stics	1		
Status display	1 green LED per channel]		
Interrupts	None			
	News			

None

Diagnostic functions

Terminal Assignment Diagram of the CPU 314 IFM

Figure 8-10 shows the terminal assignment of the CPU 314 IFM.

For wiring up the integrated I/Os you require two 40-pin front connectors (order number: 6ES7 392-1AM00-0AA0).

Always wire up digital inputs 126.0 to 126.3 with shielded cable due to their low input delay time.

Caution

Wiring errors at the analog outputs can cause the integrated analog I/O of the CPU to be destroyed! (for example, if the interrupt inputs are wired by mistake to the analog output).

The analog output of the CPU is only indestructible up to 15 V (output with respect to M_{ANA}).

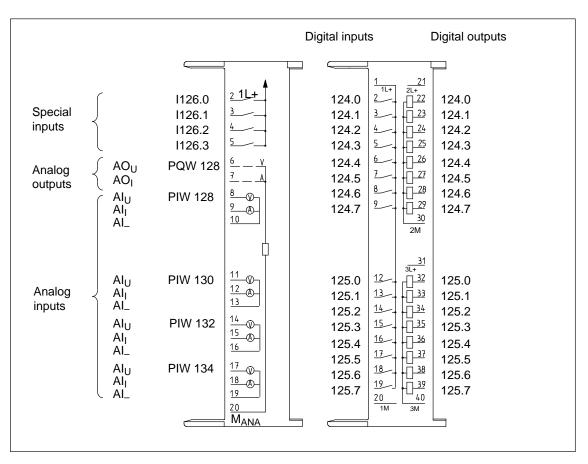
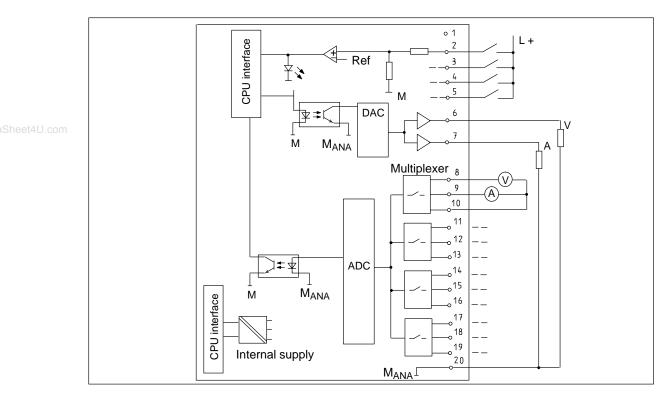



Figure 8-10 Terminal Assignment Diagram of the CPU 314 IFM

Basic Circuit Diagrams of the CPU 314 IFM

Figures 8-11 and 8-12 show the basic circuit diagrams for the integrated inputs/outputs of the CPU 314 IFM.

Figure 8-11 Basic Circuit Diagram of the CPU 314 IFM (Special Inputs and Analog Inputs/Outputs)

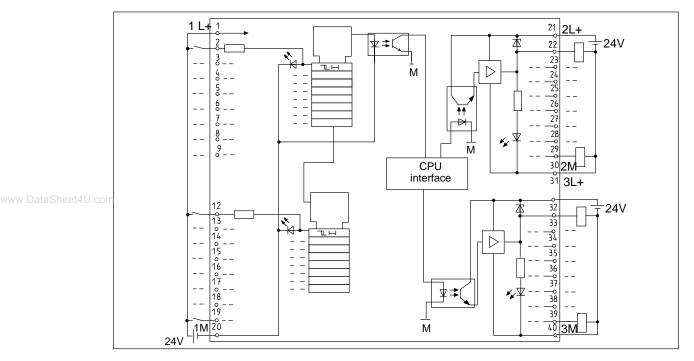


Figure 8-12 Basic Circuit Diagram of the CPU 314 IFM (Digital Inputs/Outputs)

Wiring the Analog Inputs

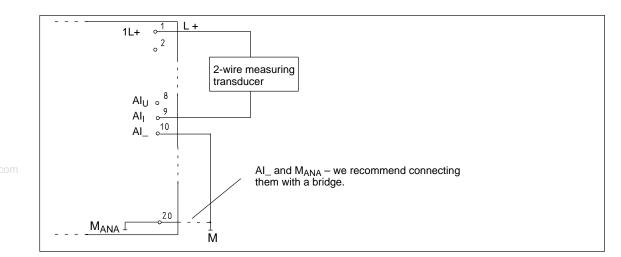


Figure 8-13 Wiring the Analog Inputs of the CPU 314 IFM with a 2-Wire Measuring Transducer

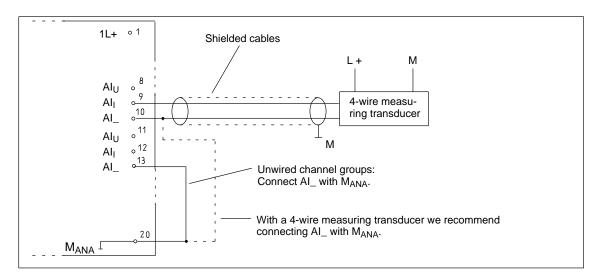


Figure 8-14 Wiring the Analog Inputs of the CPU 314 IFM with a 4-Wire Measuring Transducer

8.4.5 CPU 315

Order No.

6ES7 315-1AF03-0AB0

Technical Specifications	of	the	CPU	315
---------------------------------	----	-----	-----	-----

	Memory		Analog inputs	128
DataSheet4U.com	Working memory (integral) 48 KB		Analog outputs	128
	Load memory		Process image	0 to 127
	Integral	80 KB RAM	Inputs	I 0.0 to I 127.7
	Expandable	up to 4 MB	Outputs	Q 0.0 to Q 127.7
		FEPROM (memory	Blocks	
		card)	OBs	See Appendix B
	Speed	approx. 0.3 ms per	max. size	16 KB
		1000 binary instructions	• FBs	192
		Instructions	max. size	16 KB
	Bit memories	2048	• FCs	192
	 Adjustable retentivity 	MB 0 to MB 255	max. size	16 KB
			DBs max aiza	254 (DB0 reserved)
	 Preset 	MB 0 to MB 15	max. size	16 KB
	Counter	64	SFCs	See Appendix C
	 Adjustable retentivity 	from C 0 to C 63	SFBs	See Appendix C
	Preset	from C 0 to C 7	Functions	
	Times (only updated in	128	Real-time clock	Hardware clock
	OB1!)		Operating hours counter	1
	Adjustable retentivity	from T 0 to T 127	Number	0
	Preset	No retentive times	Value range	0 to 32767 hours
	Retentive data area	8 DBs; max. 4096 data bytes (in total)	Selectivity	1 hour
			Retentive	Yes
			Backup battery	
	Maximum sum of retentive	4736 bytes	Backup time	min. 1 year
	data		at 25 °C and	
	Clock memories	8 (1 memory byte)	uninterrupted backup of	f
	Local data		the CPU	
	In all	1536 bytes	Storage st 25 %	approx. 5 years
	 Per priority class 	256 bytes	at 25 °C	
	Nesting depth	8 per priority class;	Buffer time of clock with ac-	
		4 additional levels	cumulator	
		within a synchro-	at 0°C	4 weeks (typical)
		nous error OB	at 25°C at 40°C	4 weeks (typical) 3 weeks (typical)
	Digital inputs	1024	at 60°C	1 week (typical)
	Digital outputs	1024	<u>L</u>	())) · · · /

Ba	ttery charging time	1 h (typical)	Dimensions, Configura
Сс	ommunications		Installation dimensions
M	ין		$W \times H \times D$ (mm)
•	Guaranteed PG connections	1	Weight (without memory card and backup battery
•	Guaranteed OP connections	1	Configuration
•	Free connections for PG/OP/configured S7 connections	2	Norms, Test Specificat
•	Guaranteed connections for non-configured S7 connections	8	
•	Global data communication No. of GD circuits No. of send packets per GD circuit No. of receive packets per GD circuit max. net data per packet	4 1 1 22 bytes	
•	Length of consistent data per packet Number of nodes	8 bytes max. 32;	
-	Number of nodes	127 with repeaters	
•	Transmission rate Distance without repeaters with 2 repeaters with 10 repeaters in series	19.2; 187.5 kbps 50 m (54.5 yd.) 1100 m (1199 yd.) 9100 m (9919 yd.)	
•	MPI interface	Non-isolated	
/o	Itages, Currents		
Ra	ated voltage	24V DC (– 10 %/+ 15 %)	
	ırrent drawn from 24 V le)	0.7 A (typical)	
Inr	rush current	8 A	
l ² t		0.4 A ² s	
lin	ternal fusing for supply es commendation)	Circuit breaker; 2 A, type B or C	
Dr	ower losses	8 W (typical)	

Dimensions, Configuration					
Installation dimensions $W \times H \times D$ (mm)	80 × 125 × 130				
Weight (without memory card and backup battery)	0.53 kg (15.75 oz)				
Configuration	max. 32 modules on 4 racks				
Norms, Test Specifications					
Norms, test specifications	see <i>Module Specifications</i> Reference Manual				

8.4.6 CPU 315-2 DP

Order No.

6ES7 315-2AF03-0AB0

DP master or DP slave

ww.DataSheet4U.com

You can use the CPU 315-2 DP with its 2nd interface (PROFIBUS-DP interface) either as a DP master or as a DP slave in a PROFIBUS-DP network.

See Chapter 9 for a detailed description of the PROFIBUS-DP features of the CPU 315-2 DP.

Technical Specifications of the CPU 315-2 DP

Memory		Nesting depth	8 per priority class;
Working memory (integral) Load memory	64 KB		4 additional levels within a synchro- nous error OB
IntegralExpandable	96 KB RAM up to 4 MB FEPROM (memory card)	Digital inputs Digital outputs (central and in a distributed configuration)	1024 1024
Speed	approx. 0.3 ms per 1000 binary instr.	Analog inputs Analog outputs	128 128
Bit memoriesAdjustable retentivity	2048 MB 0 to MB 255	(central and in a distributed configuration)	
Preset	MB 0 to MB 15	Process image	0 to 127
Counter	64 from 0.045 0.00	Inputs Outputs	l 0.0 to l 127.7 Q 0.0 to Q 127.7
Adjustable retentivityPreset	from C 0 to C 63 from C 0 to C 7	DP Address Area	1 KB (see Section 9)
Times (only updated in OB1!)	128	Blocks OBs	See Appendix B
 Adjustable retentivity 	from T 0 to T 127	max. size	16 KB
 Preset 	No retentive times	 FBs max. size 	192 16 KB
Retentive data area	8 DBs; max. 4096 data bytes (in total)	 FCs max. size DBs 	192 16 KB 254 (DB, reconved)
Maximum sum of ret. data	4736 bytes	• DBs max. size	254 (DB reserved) 16 KB 0
Clock memories	8 (1 memory byte)	SFCs	See Appendix C
Local data	· · · · ·	SFBs	See Appendix C
• In all	1536 bytes		
 Per priority class 	256 bytes		

Fι	Inctions		•	Transmission rate	19.2;
Re	eal-time clock	Hardware clock	•	Distance without repeaters	187.5 kbps 50 m (54.5 yd.)
O	perating hours counter	1		with 2 repeaters	1100 m (1199 yd.)
•	Number	0		with 10 repeaters in	9100 m (9919 yd.)
•	Value range	0 to 32767 hours		series	
•	Selectivity	1 hour	•	MPI interface	Non-isolated
•	Retentive	Yes	PF	ROFIBUS-DP	
Ba	ackup battery		•	Possible no. of DP	64
•	Backup time	min. 1 year		slaves	
	at 25 °C and		•	Address area per DP	244 bytes inputs/
	uninterrupted backup of the CPU			slave largest consistent block	outputs 32 bytes
		_	•	Transmission rate	up to 12 Mbps
•	Storage at 25 °C	approx. 5 years	•	Transmission rate	no
_				detection as a DP slave	
	Iffer time of clock with ac-		•	SYNC/FREEZE	yes
cu	at 0°C	typ. 4 weeks		(as DP master)	
	at 25°C	typ. 4 weeks	•	Routing	yes max. 4
	at 40°C	typ. 3 weeks		connections	Yes
	at 60°C	typ. 1 week	•	Direct communication	Yes
_			•	Equidistance	105
	attery charging time	1 h (typical)	•	Intermediate memory (as a DP slave)	244 bytes inputs
Co	ommunications				and 244 bytes out- puts, up to 32 ad-
M	PI				dress areas can be
•	Guaranteed PG	1			configured, max.
	connections				32 bytes per ad-
•	Guaranteed OP	1	•	Distance	dress area
•	connections	2			Depending on the transmission rate
•	Free connections for PG/OP/configured S7	2			(see Section 5.1.3)
	connections				
•	Guaranteed	8	•	PROFIBUS-DP	Galvanically isolate
	connections for			interface	
	non-configured S7 connections		Vo	ltages, Currents	
•	Global data		Ra	ated voltage	24V DC
	communication			aled voltage	(- 10 %/+ 15 %)
	No. of GD circuits	4	C	urrent drawn from 24 V	0.9 W (typical)
	No. of send packets per GD circuit	1		lle)	
	No. of receive packets	1	·	rush current	8 A
	per GD circuit				-
	max. net data per	22 bytes	l ² t		0.4 A ² s
	packet Length of consistent	8 bytes		ternal fusing for supply	Circuit breaker; 2
	data per packet		lin	es (recommendation)	type B or C
•	Number of nodes	max. 32;	Po	ower losses	10 W (typical)
		127 with repeaters			

Dimensions, Configuration		Norms, Test Specifications	
Installation dimensions $W \times H \times D$ (mm)	80 × 125 × 130	Norms, test specifications	see <i>Module</i> <i>Specifications</i> Reference Manual
Weight (without memory card and backup battery)	0.53 kg (15.75 oz)		Reference Marida
Configuration	max. 32 modules on 4 racks		

ww.DataSheet4U.com

8.4.7 CPU 316-2 DP

Order No.

6ES7 316-2AG00-0AB0

DP master or DP slave

ww.DataSheet4U.com

You can use the CPU 316-2 DP with its 2nd interface (PROFIBUS-DP interface) either as a DP master or as a DP slave in a PROFIBUS-DP network.

See Chapter 9 for a detailed description of the PROFIBUS-DP features of the CPU 316-2 DP.

Technical Specifications of the CPU 316-2 DP

Memory		Nesting depth	8 per priority class;
Working memory (integral) Load memory	128 KB		4 additional levels within a synchro- nous error OB
IntegralExpandable	192 KB RAM up to 4 MB FEPROM (memory card)	Digital inputs Digital outputs (central and in a distributed configuration)	2048 2048
Speed	approx. 0.3 ms per 1000 binary instructions	Analog inputs Analog outputs (central and in a distributed	128 128
Bit memories	2048	configuration)	
Adjustable retentivity	MB 0 to MB 255	Process image	0 to 127
Preset	MB 0 to MB 15	Inputs	1 0.0 to 1 127.7
Counter	64	Outputs	Q 0.0 to Q 127.7
Adjustable retentivity	from C 0 to C 63	DP Address Area	2 KB
Preset	from C 0 to C 7		(see Section 9)
Times (only updated in OB1!)	128	Blocks OBs	See Appendix B
Adjustable retentivity	from T 0 to T 127	max. size	16 KB
Preset	No retentive times	FBs max. size	256 16 KB
Retentive data area	8 DBs; max. 4096 data bytes (in total)	FCs max. size	512 16 KB
Maximum sum of retentive	4736 bytes	DBs max. size	511 (DB reserved) 16 KB 0
data		SFCs	See Appendix C
Clock memories	8 (1 memory byte)	SFBs	See Appendix C
Local data			
• In all	1536 bytes		
 Per priority class 	256 bytes		

Fu	inctions		Transmission rate 19.2;
Re	eal-time clock	Hardware clock	Distance 187.5 kbps
Or •	perating hours counter Number Value range	1 0 0 to 32767 hours	without repeaters50 m (54.5 yd.)with 2 repeaters1100 m (1199 yd.)with 10 repeaters in9100 m (9919 yd.)series9100 m (9919 yd.)
•	Selectivity	1 hour	MPI interface Non-isolated
•	Retentive	Yes	PROFIBUS-DP
Ba •	ackup battery Backup time at 25 °C and uninterrupted backup of the CPU	min. 1 year	 Possible no. of DP 125 slaves Address area per DP 244 bytes inputs/ slave outputs largest consistent block 32 bytes
•	Storage at 25 °C	approx. 5 years	Transmission rate up to 12 Mbps
-	Iffer time of clock with ac- mulator at 0°C	typ. 4 weeks	detection as a DP slave SYNC/FREEZE Yes
	at 25°C	typ. 4 weeks	(as DP master)
	at 40°C	typ. 3 weeks	Routing yes connections max. 4
	at 60°C	typ. 1 week	Direct communication Yes
Ba	attery charging time	1 h (typical)	Equidistance Yes 244 bytes inputs Intermediate memory and 244 bytes out
Co	ommunications		(as a DP slave) and 244 bytes out-
MI •	PI Guaranteed PG connections Guaranteed OP	1	puts, up to 32 ad- dress areas can be configured, max. 32 bytes per address area
•	connections Free connections for PG/OP/configured S7	2	Distance Depending on the transmission rate (see Section 5.1.3)
•	connections Guaranteed	8	PROFIBUS-DP Galvanically isolated interface
	connections for non-configured S7		Voltages, Currents
	connections Global data		Rated voltage 24V DC (- 10 %/+ 15 %)
	communication No. of GD circuits No. of send packets per	4	Current drawn from 24 V 0.9 W (typical) (idle)
	GD circuit		Inrush current 8 A
	No. of receive packets per GD circuit	1	l ² t 0.4 A ² s
	max. net data per packet Length of consistent	22 bytes 8 bytes	External fusing for supply Circuit breaker; 2 A, lines (recommendation) type B or C
	data per packet	0 59105	Power losses 10 W (typical)
•	Number of nodes	max. 32; 127 with repeaters	

Dimensions, Configuration		Configuration	max. 32 modules on
Installation dimensions	80 × 125 × 130		4 racks
$W \times H \times D$ (mm)		Norms, Test Specification	s
Weight (without memory card and backup battery)	0.53 kg (15.75 oz)	Norms, test specifications	see <i>Module</i> <i>Specifications</i> reference Manual

vww.DataSheet4U.com

8.4.8 CPU 318-2

Order No.

6ES7 318-2AF00-0AB0

Special Features

- 4 accumulators
- The MPI interface can be reconfigured: MPI or PROFIBUS DP (DP master).
- Data areas can be set (process image, local data)

For more information on the differences between the CPU 318-2 and the other CPUs, see Section 11.1.

DP master or **DP** slave

You can use the CPU 318-2 DP either as a DP master or as a DP slave in a PROFIBUS-DP network.

See Chapter 9 for a detailed description of the PROFIBUS-DP features of the CPU 318-2.

Definable Data Areas and Occupied Working Memory

You can change the size of the process image for the inputs/outputs and the local data areas when parameterizing the CPU 318-2.

If you increase the preset values for the process image and local data, this occupies additional working memory that is then no longer available for user programs.

The following proportions must be taken into consideration:

 Process image input table: 1 byte PII occupied 12 bytes in the working memory
 Process image output table: 1 byte PIQ occupied 12 bytes in the working

Process image output table: 1 byte PIQ occupied 12 bytes in the working memory

For example: 256 bytes in the PII occupy 3072 bytes and 2047 bytes in the PII occupy 24564 bytes in the working memory.

• Local data 1 local data byte occupies 1 byte in the working memory There are 256 preset bytes per priority class. With 14 priority classes there are therefore 3584 bytes occupied in the working memory. With a maximum size of 8192 bytes you can still allocate 4608 bytes, which are then no longer available for the user program in the working memory.

Communication

You can reconfigure the first interface of the CPU from an MPI interface to a DP interface (DP master).

You can run the CPU as a DP master or a DP slave via the second DP interface.

In routing, the maximum number of possible connections is reduced for each of the two interfaces by 1 connection for each active PG/OP connection that the CPU 318-2 uses as a gateway.

Technical Specifications of the CPU 318-2

Memory		Nesting depth	16 per priority class;
Working memory (integral)For user program	512 KB 256 KB		3 additional levels within a synchro- nous error OB
For dataLoad memoryIntegral	256 KB 64 KB RAM	Address area (central and in a distributed configuration)	8 KB
Expandable	up to 4 MB FEPROM (memory card) or up to 2 MB RAM (memory card)	Process image (default) Inputs Outputs	0 to 255 I 0.0 to I 255.7 Q 0.0 to Q 255.7
Speed	approx. 0.1 ms per 1000 binary instructions	Process image (expanda- ble) Inputs	to 2047
Bit memoriesAdjustable retentivity	8192 MB 0 to MB 1023	Outputs Blocks	Q 0.0 to Q 2047.7
Preset	MB 0 to MB 15	OBs max. size	See Appendix B 64 KB
Counter Adjustable retentivity Preset 	512 from C 0 to C 511 from C 0 to C 7	 FBs max. size FCs max. size DBs max. size 	1024 64 KB 1024 64 KB 2047 (DB 0 reser- ved) 64 KB
Times Adjustable retentivity Preset 	512 from T 0 to T 511 No retentive times		
Retentive data area	8 DBs; max. 8192 data bytes (in total)	SFCsSFBs	See Appendix C See Appendix C
Maximum sum of retentive data	11 KB		
Clock memories	8 (1 memory byte)		
 Local data Preset expandable to Per priority class 	4096 bytes 8192 bytes 256 bytes		

Functions		Co	mmunications	
Real-time clock	Hardware clock		al number of	max. 32;
Operating hours counter	8		nnections using both erfaces	
Number	0 to 7		G/OP/configured/not	
 Value range 	0 to 32767 hours		nfigured S7 connections	
 Selectivity 	1 hour		h terminal point on the	
Retentive	Yes	CP	,	
Backup battery		1st	t MPI/DP Interface	
 Backup time 	min. 1 year	MP	PI Functionality	
at 25 °C and uninterrupted backup of the CPU (incl. 1 MB RAM memory card)		•	Connections for PG/OP/configured/not configured S7 connections/routing	max. 32
 Storage at 25 °C 	approx. 5 years		Of these, the following are reserved:	1 PG and 1 C nection
Buffer time of clock with ac- cumulator		•	Global data communication	
at 0°C	typ. 4 weeks		No. of GD circuits No. of send packets per	8 1
at 25°C	typ. 4 weeks		GD circuit	
at 40°C	typ. 3 weeks		No. of receive packets	2
at 60°C	typ. 1 week		per GD circuit max. net data per	54 bytes
Battery charging time	1 h (typical)		packet Length of consistent	32 bytes
			data per packet	52 Dyie5
		•	Number of nodes	max. 32; 127 with repe

Transmission rate

Distance

٠

•

9.6; 19.2; 93.75; 187.5; 500 kbps;

1.5; 3; 6; 12 Mbps

see Tables 5-3 and 5-4 on page 5-12

DF	P Functionality		Intermediate memory 244 bytes inputs and
•	Connections for PG/OP/configured/non- configured S7 connections/routing Of these, the following	max. 32 1 PG and 1 OP con-	(as a DP slave) 244 bytes outputs up to 32 address areas can be confi gured, max. 32 bytes per address area
	are reserved:	nection	Distance see Table 5-4 on
•	Connectable DP slaves	32	page 5-12
•	Address area per DP	244 bytes inputs/	Voltages, Currents
	slave largest consistent block	outputs 32 bytes	Rated voltage 24V DC (- 10 %/+ 15 %)
•	Transmission rate SYNC/FREEZE	up to 12 Mbps Yes	Current drawn from 24 V 1.2 A (typical) (idle)
•	Routing	Yes Yes	Inrush current 8 A
•	Direct communication Equidistance	Yes	l ² t 0.4 A ² s
 Intermediate memory (as a DP slave) 	244 bytes inputs and 244 bytes outputs, up to 32 address areas can be confi-	External fusing for supply Circuit breaker; 2 A lines type B or C (recommendation)	
		gured, max. 32 bytes	Power losses 12 W (typical)
		per address area	Dimensions, Configuration
	d DP Interface		
•	Connections for PG/OP/configured S7 connections/routing	max. 16	Weight (without memory 0.93 kg (15.75 oz) card and backup battery)
•	Connectable DP slaves	125	
•	Address area per DP slave	244 bytes inputs/ outputs	4 racks
•	Transmission rate	up to 12 Mbps	Norms, Test Specifications
•	Transmission rate detection as a DP slave	no	Norms, test specifications see Module Specifications
•	SYNC/FREEZE (as DP master)	yes	Reference Manual
•	Routing	Yes	
•	Direct communication	Yes	
•	Equidistance	Yes	

www.DataSheet4U.com

CPU 31x-2 as DP Master/DP Slave and Direct Communication

/ww.DataSheet4U.com

Introduction

In this chapter you will find the features and technical specifications of the CPUs 315-2 DP, 316-2 DP and 318-2. You will need these in order to use the CPU as a DP master or a DP slave and configure it for direct communication.

Declaration: Since the DP master/DP slave behavior is the same for all CPUs, the CPUs are described below as CPU 31x-2.

In This Chapter

Section	Contents	Page
9.1	DP Address Areas of the CPU 31x-2	9-2
9.2	CPU 31x-2 as DP Master	9-3
9.3	Diagnostics of the CPU 31x-2 as DP Master	9-4
9.4	CPU 31x-2 as DP Slave	9-10
9.5	Diagnostics of the CPU 31x-2 as DP Slave	9-15
9.6	Parameter Assignment Frame and Configuration Frame	9-29
9.7	Direct Communication	9-36
9.8	Diagnostics in Direct Communication	9-37

Additional Literature

Descriptions and notes pertaining to configuration in general, configuration of a PROFIBUS subnet and diagnostics in the PROFIBUS subnet can be found in the *STEP 7* online help system.

9.1 DP Address Areas of the CPUs 31x-2

Address Area	315-2 DP	316-2 DP	318-2
DP address area for both inputs and outputs	1024 bytes	2048 bytes	8192 bytes
Number of those in the process image	Bytes 0 to 127	Bytes 0 to 127	Bytes 0 to 255 (default)
for both inputs and outputs			Can be set up to byte 2047

Address Areas of the CPU 31x-2

DP diagnostic addresses occupy 1 byte for the DP master and for each DP slave in the address area for the inputs. Under these addresses, for example, the DP standard diagnosis for the respective nodes can be called (LADDR parameter of SFC 13). The DP diagnostic addresses are specified during configuration. If you do not specify any DP diagnostic addresses, *STEP 7* allocates the addresses from the highest byte address downwards as DP diagnostic addresses.

9.2 CPU 31x-2 as DP Master

Introduction

This section covers the features and technical specifications of the CPU when it is used as a DP master.

The features and technical specifications of the CPU 31x-2 as the "standard" CPU are listed in Section 8.

www.DataSheet4U.com

Prerequisites

Should the MPI/DP interface be a DP interface? If so, you must then configure the interface as a DP interface.

Before the CPU can be put into operation, it must be configured as a DP master. This means carrying out the following steps in *STEP 7*:

- Configure the CPU as a DP master.
- Assign a PROFIBUS address.
- Assign a master diagnostic address.
- Integrate DP slaves into the DP master system.

Is a DP slave a CPU 31x-2?

If so, you will find that DP slave in the PROFIBUS-DP catalog as "pre-configured station". This DP slave CPU must be assigned a slave diagnostic address in the DP master. You must then interconnect the DP master with the DP slave CPU and stipulate the address areas for data interchange with the DP slave CPU.

Programming, Modifying and Monitoring via the PROFIBUS

As an alternative to the MPI interface, you can program the CPU or execute the PG's Monitor and Modify functions via the PROFIBUS-DP interface.

Note

The use of Monitor and Modify via the PROFIBUS-DP interface lengthens the DP cycle.

Equidistance

As of STEP7 V 5.x you can parameterize bus cycles of the same length (equidistant) for PROFIBUS subnets. You can find a detailed description of equidistance in the STEP7 online help system.

Power-Up of the DP Master System

CPU 31x-2 DP is DP Master	CPU 318-2 is DP Master			
You can also set power-up time monitoring of the DP slaves with the "Transfer of parameters to modules" parameter.	Using the parameters "Transfer of parameters to modules" and "Ready message from modules" you can set power-up time monitoring for the DP slaves.			
This means that the DP slaves must be powered up and parameterized by the CPU (as DP master) in the set time.				

ww.DataSheet4U.com

PROFIBUS Address of the DP Master

You cannot set the 126 as the PROFIBUS address for the CPU 31x-2.

9.3 Diagnostics of the CPU 31x-2 as DP Master

Diagnosis with LEDs

Table 9-1 explains the meaning of the BUSF LED. The BUSF LED assigned to the interface configured as the PROFIBUS-DP interface will always come on or flash.

BUSF	Description	Remedy		
LED off	Configuring data OK;	-		
	all configured slaves are addressable.			
LED on	Bus fault (hardware fault).	• Check the bus cable for short or interruption.		
	 DP interface fault. Different transmission rates in multiple DP master mode. 	• Evaluate the diagnostic data. Reconfigure or correct the configuring data.		
LED flashes	Station failure.	• Ensure that the bus cable is connected to the CPU 31x-2 and that the bus is not interrupted.		
	 At least one of the configured slaves cannot be addressed. 	 Wait until the CPU 31x-2 has powered up. If the LED does not stop flashing, check the DP slaves or evaluate the diagnostic data for the DP slaves. 		

Table 9-1 Meaning of the BUSF LED of the CPU 31x-2 as DP Master

Reading Out the Diagnostic Data with STEP 7

DP Master Block or Register in <i>STEP 7</i>		Application	See		
CPU 31x-2	DP slave diagnosis register	Display slave diagnosis as plain text on the <i>STEP 7</i> user interface	See the section on hardware diagnostics in the <i>STEP</i> 7 online help system and in the <i>STEP</i> 7 User Manual		
	SFC 13 "DPNRM_DG"	Read out slave diagnosis (store in the data area of the user program)	Configuration for the CPU 31x-2 see Section 9.5.4; SFC, see <i>System and Standard Functions</i> Reference Manual Configuration for other slaves, see their description		
	SFC 59 "RD_REC"	Read out data records of the S7 diagnosis (store in the data area of the user program)	System and Standard Functions		
	SFC 51 "RDSYSST"	Read out system state sublists. Call SFC 51 in the diagnostic interrupt with the system state list ID W#16#00B4, and read out the system state list of the slave CPU.	Reference Manual		

Table 9-2Reading Out the Diagnostic Data with STEP 7

Evaluating a Diagnosis in the User Program

The following figures show you how to evaluate the diagnosis in the user program. Note the order number for the CPU 315-2 DP:

CPU 315-2 DP < 6ES7 315-2AF 03 -0AB0	CPU 315-2 DP as of 6ES7 315-2AF 03 -0AB0 CPU 316-2 DP as of 6ES7 316-2AG00-0AB0 CPU 318-2 as of 6ES7 318-2AJ00-0AB0
See Figure 9-1 on page 9-6	See Figure 9-2 on page 9-7

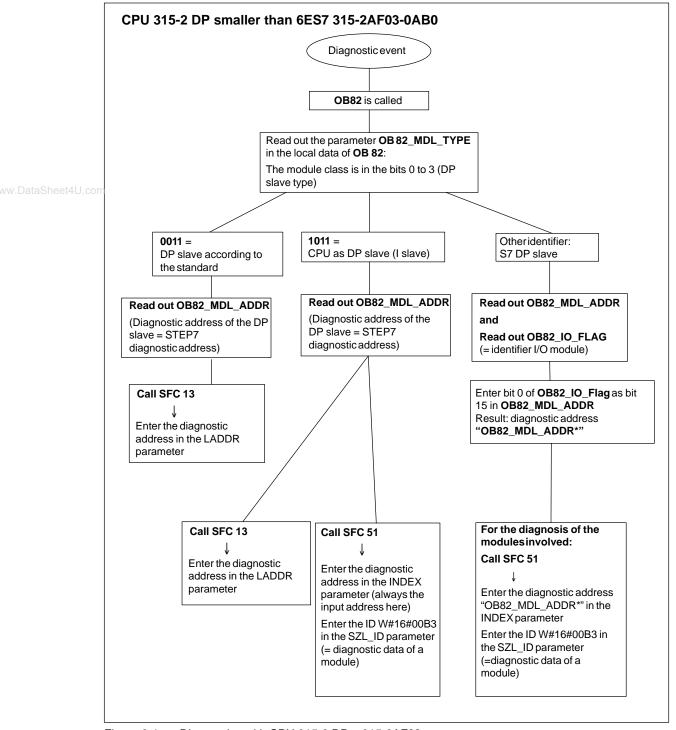


Figure 9-1 Diagnostics with CPU 315-2 DP < 315-2AF03

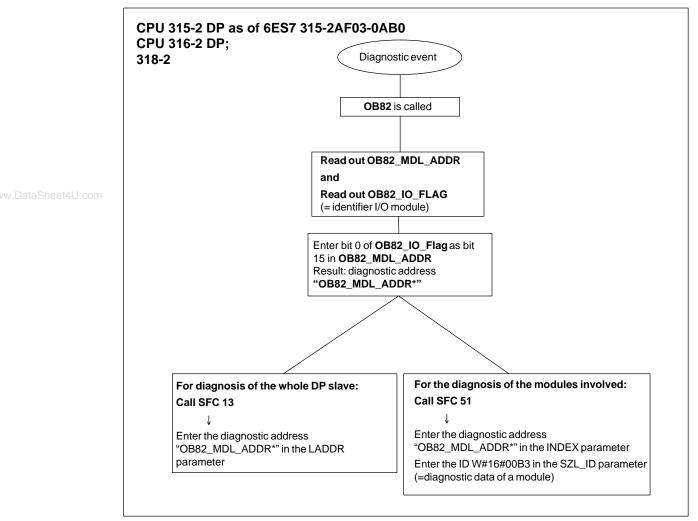


Figure 9-2 Diagnostics with CPU 31x-2 (315-2 DP as of 315-2AF03)

Diagnostic Addresses

With the CPU 31x-2 you assign diagnostic addresses for the PROFIBUS-DP bus system. Make sure during configuration that DP diagnostic addresses are assigned to both the DP master and the DP slave.

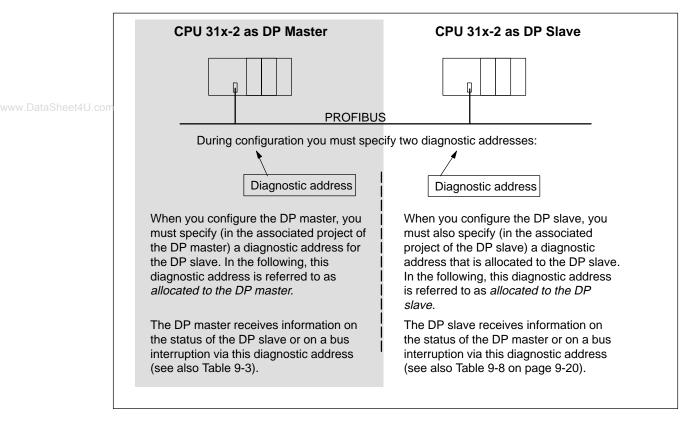


Figure 9-3 Diagnostic Addresses for DP Master and DP Slave

Event Detection

Table 9-3 shows how the CPU 31x-2 as DP master recognizes status changes in a CPU as DP slave or interruptions in data transfer.

Table 9-3	Event Detection of the CPU 31x-2 as DP Master

Event	What Happens in the DP Master
Bus interruption (short-circuit, plug pulled)	 OB 86 is called and a <i>station failure</i> reported (incoming event; Diagnostic address of the DP slave, assigned to the DP master) With I/O access: OB 122 is called up (I/O access error)
DP slave: RUN \rightarrow STOP	 OB 82 is called and <i>Module fault</i> reported (incoming event; Diagnostic address of the DP slave assigned to the DP master; Variable OB82_MDL_STOP=1)
DP slave: STOP \rightarrow RUN	 OB 82 is called and <i>Module ok</i> reported. (outgoing event; diagnostic address of the DP slave assigned to the DP master; Variable OB82_MDL_STOP=0)

w DataSheet4LL.com

Evaluation in the User Program

Table 9-4 shows you how you can, for example, evaluate RUN-STOP transitions of the DP slave in the DP master (see Table 9-3).

Table 9-4 Evaluating RUN-STOP Transitions of the DP Slaves in the DP Master

In the DP Master	In the DP Slave (CPU 31x-2 DP)
Diagnostic addresses: (example) Master diagnostic address=1023 Slave diagnostic address in the master system=1022	Diagnostic addresses: (example) Slave diagnostic address=422 Master diagnostic address=Irrelevant
 The CPU calls OB 82 with the following information: OB 82_MDL_ADDR:=1022 OB82_EV_CLASS:=B#16#39 (incoming event) OB82_MDL_DEFECT:=Module fault Tip: This information is also in the CPU's diagnostic buffer In the user program, you should also include the SFC 13 "DPNRM_DG" to read out the DP slave diagnostic data. 	 CPU: RUN → STOP CPU generates a DP slave diagnostic frame (see Section 9.5.4).

9.4 CPU 31x-2 as DP Slave

Introduction

This section lists the characteristics and technical specifications for the CPU when it is operated as a DP slave.

The characteristics and technical specifications of the CPU as the "standard" CPU can be found in Section 8.

ww.DataSheet4U.com

Prerequisites

Should the MPI/DP interface be a DP interface? If so, you must configure the interface as a DP interface.

Prior to start-up, the CPU must be configured as a DP slave. This means carrying out the following steps in *STEP 7*:

- "Switch on" the CPU as DP slave.
- Assign a PROFIBUS address.
- Assign a slave diagnostic address.
- Stipulate the address areas for data interchange with the DP master.

Device Master Files

You need a device master file to configure the CPU 31x-2 as a DP slave in a DP master system.

The device master file is included in COM PROFIBUS as of version 4.0.

If you are working with an older version or another configuration tool, you can get the device master file from the following sources:

• On the Internet at http://www.ad.siemens.de/csi_e/gsd

or

• Via modem from the **SSC** (Interface Center) Fuerth by calling +49/911/737972.

Programming, Modifying and Monitoring via the PROFIBUS

As an alternative to the MPI interface, you can program the CPU or execute the PG's Monitor and Modify functions via the PROFIBUS-DP interface. To do so, you must enable these functions when configuring the CPU as a DP slave in *STEP 7*.

Note

The use of Monitor and Modify via the PROFIBUS-DP interface lengthens the DP cycle.

www.DataSheet4U.com

Data Transfer Via an Intermediate Memory

The CPU 31x-2 provides an intermediate memory as DP slave for the PROFIBUS DP bus system. The data transfer between the CPU as DP slave and the DP master always takes place via this intermediate memory. You can configure up to 32 address areas for this.

This means that the DP master writes its data in these address areas in the intermediate memory and that the CPU reads this data in the user program and vice versa.

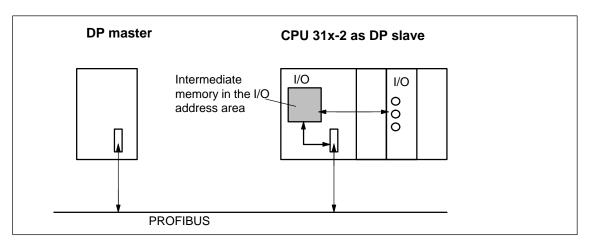


Figure 9-4 Intermediate Memory in the CPU 31x-2 as DP Slave

Address Areas of the Intermediate Memory

In STEP 7 you configure input and output address areas:

- You can configure up to 32 input and output address areas.
- Each of these address areas can have up to 32 bytes.
- You can configure a maximum of 244 bytes for inputs and 244 bytes for outputs.

The following table shows the principle of address areas. You can also find this figure in the *STEP 7* configuration.

ww.DataSheet4U.com

 Table 9-5
 Configuration Example for the Address Areas of the Intermediate Memory

	Туре	Master Address	Туре	Slave Address	Length	Unit	Consistency
1	E	222	Α	310	2	Byte	Unit
2	Α	0	Е	13	10	Word	Total length
:							
32							
	Address areas in the DP master CPU			ss areas in slave CPU		ddress area pa cal for DP mas	arameters must ster and DP

Rules

The following rules must be followed when using the intermediate memory:

- Allocating the address areas:
 - Input data of the DP slave are always output data of the DP master
 - Output data of the DP slave are always input data of the DP master
- The addresses can be freely allocated. In the user program, access the data with Load/Transfer statements or with SFCs 14 and 15. You may also specify addresses from the process input or process output image (also see Section 3.2).

Note

You assign addresses for the intermediate memory from the DP address area of the CPU 31x-2.

You cannot assign addresses already allocated to the intermediate memory to the I/O modules in the CPU 31x-2!

- The lowest address in any given address area is that address area's start address.
- The length, unit and consistency of the address areas for DP master and DP slave must be identical.

S5 DP Master

If you are using an IM 308 C as a DP master and the CPU 31x-2 as a DP slave, the exchange of consistent data requires the following:

In the IM 308 C, you must program FB 192 to enable the exchange of consistent data between DP master and DP slave. With FB 192, the data of the CPU 31x-2 data is output or read out contiguously only in a single block.

S5-95 as a DP master

If you are using an AG S5-95 as a DP master, you must also set its bus parameters for the CPU 31x-2 as a DP slave.

ww.DataSheet4U.con

Sample Program

Below you will see a small sample program for the exchange of data between DP master and DP slave. The addresses used in the example are those from Table 9-5.

	In the DP Slave CPU			In the DP Master CPU			
L	2		Data				
т	MB	6	preprocessing in				
L	IB	0	DP slave				
т	MB	7					
U.com L	MW	6	Forward data to				
т	PQW	310	DP master				
				L	PIB	222	Postprocess
				т	MB	50	receive data in
				L	PIB	223	DP master
				L	B#16#		
				+	I		
				т	MB	51	
				L	10		Data Processing
				+	3		in DP master
				т	MB	60	
				CALL	SFC	15	Send data to DI
				LADDF	R:= ₩#16	#0	slave
				RECOR	D:= P#M	60.0 Byte2	20
				RET_V	VAL:=MW	22	
CALL	SFC	14	Receive data				
LAD	DR:=W#16#	D	from DP master				
RET	VAL:=MW	20					
REC	ORD:=P#M3	0.0 Byte2	20				
L	MB	30	Postprocess				
L	MB	7	receive data				
+	I						
т	MW	100					

Data Transfer in STOP Mode

The DP slave CPU goes into STOP mode: The data in the intermediate memory of the CPU is overwritten with "0". In other words, the DP master reads "0".

The DP master goes into STOP mode: The current data in the intermediate memory of the CPU is preserved and can still be read by the CPU.

PROFIBUS address

You cannot set the 126 as the PROFIBUS address for the CPU 31x-2.

9.5 Diagnostics of the CPU 31x-2 as DP Slave

In This Section

In Section	Contents	Page
9.5.1	Diagnosis with LEDs	9-16
9.5.2	Diagnosis with STEP 5 or STEP 7	9-16
9.5.3	Reading Out the Diagnostic Data	9-17
9.5.4	Format of the Slave Diagnostic Data	9-21
9.5.5	Station Status 1 to 3	9-22
9.5.6	Master PROFIBUS Address	9-24
9.5.7	Manufacturer Identification	9-24
9.5.8	Module Diagnostics	9-25
9.5.9	Station Diagnostics	9-26
9.5.10	Interrupts	9-28

vww.DataSheet4U.com

9.5.1 Diagnosis with LEDs

Diagnosis with LEDs – CPU 31x-2

Table 9-6 explains the meaning of the BUSF LEDs. The BUSF LED assigned to the interface configured as the PROFIBUS-DP interface will always come on or flash.

Table 9-6 Meaning of the BUSF LEDs in the CPU 31x-2 as DP Slave

BUSF	Description	Remedy
LED off	Configuring OK.	-
LED flashes	 The CPU 31x-2 is incorrectly parameterized. There is no data interchange between the DP master and the CPU 31x-2. Reasons: Timeout. Bus communication via PROFIBUS interrupted. Incorrect PROFIBUS address. 	 Check the CPU 31x-2. Check to make sure that the bus connector is properly inserted. Check for interruptions in the bus cable to the DP master. Check configuring data and parameters.
LED on	Short-circuit on bus.	Check the bus configuration.

9.5.2 Diagnosis with *STEP 5* or *STEP 7*

Slave Diagnosis

The slave diagnosis complies with EN 50170, Volume 2, PROFIBUS. Depending on the DP master, the diagnosis can be read for all DP slaves that comply with the standard using *STEP 5* or *STEP 7*.

The following sections describe how the slave diagnosis is read and structured.

S7 Diagnosis

An S7 diagnosis can be requested for all the modules in the SIMATIC S7/M7 range of modules in the user program. The structure of the S7 diagnostic data is the same for both central and distributed modules.

The diagnostic data of a module is in data records 0 and 1 of the system data area of the module. Data record 0 contains 4 bytes of diagnostic data describing the current state of a module. The data record 1 also contains module-specific diagnostic data.

You can find out how to configure the diagnostic data in the *System and Standard Functions* Reference Manual.

9.5.3 Reading Out the Diagnostic Data

Programmable Controller with DP Master	Block or Register in <i>STEP 7</i>	Application	See
SIMATIC S7/M7	DP slave diagnosis register	Displaying slave diagnosis as plain text to the <i>STEP 7</i> surface	See the section on hardware diagnostics in the STEP 7 online help system and in the STEP 7 User Manual
	SFC 13 "DP NRM_DG"	Reading out slave diagnosis (store in the data area of the user program)	See Section 9.5.4; SFC: see <i>System and Standard</i> <i>Functions</i> Reference Manual
	SFC 51 "RDSYSST"	Reading out system state sublist. In the diagnostic interrupt alarm with the system state list ID W#16#00B4, calling SFC 51 and reading out the system state list of the slave CPU.	<i>System and Standard Functions</i> Reference Manual
	SFC 59 "RD_REC"	Reading out data records of the S7 diagnosis (store in the data area of the user program)	
	FB 99/FC 99	Evaluating slave diagnosis	On the Internet at http://www.ad.siemens.de/ simatic-cs ID 387 257
SIMATIC S5 with IM 308-C as DP master	FB 192 "IM308C"	Reading out slave diagnosis (store in the data area of the user program)	Configuration – see Section 9.5.4 FBs – see ET 200 Distributed I/O
SIMATIC S5 with S5-95U programmable controller as DP master	FB 230 "S_DIAG"		<i>Device</i> Manual

Table 9-7 Reading Out the Diagnostic Data with STEP 5 and STEP 7 in the Master System

Example of Reading Out the Slave Diagnosis with FB 192 "IM 308C"

Here you will find an example of how to use FB 192 to read out the slave diagnosis for a DP slave in the *STEP 5* user program.

Assumptions

The following assumptions are made for this STEP 5 user program:

- As a DP master, the IM 308-C occupies the page frames 0... 15 (number 0 of the IM 308-C).
- The DP slave has the PROFIBUS address 3.
- The slave diagnosis should be stored in data block 20. You can also use any data block for this.
- The slave diagnosis consists of 26 bytes.

STEP 5 User Program

STL			Description
	:A	DB 30	
	:SPA	FB 192	
Name	:IM308	BC	
DPAD	:	КН F800	Default address area of the IM 308-C
IMST	:	КҮ 0, 3	IM no. = 0, PROFIBUS address of the DP slave = 3
FCT	:	KC SD	Function: Read slave diagnosis
GCGR	:	KM 0	Not evaluated
TYP	:	КҮ 0, 20	S5 data area: DB 20
STAD	:	KF +1	Diagnostic data as of data word 1
LENG	:	KF 26	Length of dignostic data = 26 bytes
ERR	:	DW 0	Error code storage in DW 0 of the DB 30

Example of Reading Out the S7 Diagnosis with SFC 59 "RD_REC"

Here you will find an example of how to use the SFC 59 to read out the data records of the S7 diagnosis for a DP slave in the *STEP 7* user program. Reading out the slave diagnosis with SFC 13 is similar.

Assumptions

The following assumptions are made for this STEP 7 user program:

- The diagnosis for the input module with the address FFFF_H is to be read out.
- Data record 1 is to be read out.
- Data record 1 is to be stored in DB 10.

STEP 7User Program

STL		Description
CALL SF	°C 59	
REQ	:=TRUE	Request to Read
IOID	:=B#16#54	Identifier of the Address Area, here the I/O input
LADDR	:=W#16#FFFF	Logical address of the module
RECNUM	:=B#16#1	Data record 1 is to be read out
RET_VAL	.:=	Errors result in the output of an error code
BUSY	:=TRUE	Reading process is not finished
RECORD	:=DB 10	Destination area for the read data record 1 is data block 10

Diagnostic Addresses

With the CPU 31x-2, you assign diagnostic addresses for the PROFIBUS-DP bus system. During configuration, make sure that DP diagnostic addresses are assigned to both the DP master and the DP slave.

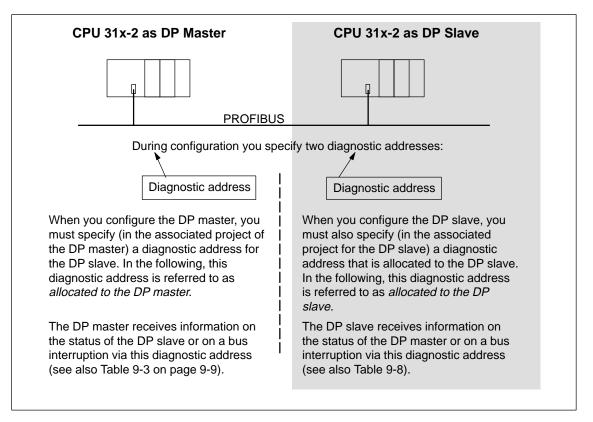


Figure 9-5 Diagnostic Addresses for DP Master and DP Slave

Event Detection

Table 9-8 shows how the CPU 31x-2 as DP slave recognizes status changes or interruptions in the transfer of data.

Event	What Happens in the DP Slave		
Bus interruption (short-circuit, plug pulled)	 OB 86 is called and <i>Station failure</i> reported (incoming event; diagnostic address of the DP slave assigned to the DP slave) 		
	 In the case of I/O access: OB 122 is called (I/O access error) 		
DP master: RUN → STOP	 OB 82 is called and <i>Module fault</i> reported (incoming event; diagnostic address of the DP slave assigned to the DP slave) Variable OB82_MDL_STOP=1) 		
DP master: STOP \rightarrow RUN	 OB 82 is called and <i>Module ok</i> reported. (outgoing event; diagnostic address of the DP slave assigned to the DP slave) Variable OB82_MDL_STOP=0) 		

Table 9-8 Event Detection of the CPU 31x-2 as DP Slave

Evaluation in the User Program

Table 9-9 shows you how you can, for example, evaluate RUN-STOP transitions of the DP master in the DP slave (see Table 9-8).

Table 9-9	Evaluating RUN-STOP	Transitions in the DP Master/DP Slave
-----------	---------------------	---------------------------------------

In the DP Master	In the DP Slave
Diagnostic addresses: (sample)	Diagnostic addresses: (example)
Master diagnostic address= 1023 Slave diagnostic address in the master system= 1022	Slave diagnostic address=422 Master diagnostic address=not relevant
CPU: RUN → STOP	 The CPU calls OB 82 with the following information: OB 82_MDL_ADDR:=422 OB82_EV_CLASS:=B#16#39 (incoming event) OB82_MDL_DEFECT:=module fault Tip: This information is also in the CPU's diagnostic buffer

9.5.4 Structure of the Slave Diagnostic Data

By	/te 0/te 1/te 2	Station status 1 to 3
Ву	/te 3	Master PROFIBUS address
-	rte 4	Low byte High byte Manufacturer identification
to	/te 6	Module diagnosis (the length depends on the number of address areas configured for the intermediate memory ¹)
to	yte x+1	Station diagnosis (the length depends on the number of address areas configured for the intermediate memory)
B; ¹ E	yte y · · · · · · · · · · · · · · · · · ·	number of address areas configured for the intermediate memory) er is incorrectly configured, the DP slave

Structure of the Slave Diagnostic Data

Figure 9-6 Structure of the Slave Diagnostic Data

9.5.5 Station Status 1 to 3

Definition

Station status 1 to 3 provides an overview of the status of a DP slave.

Station Status 1

www.DataSheet4U.com Table 9-10 Structure of Station Status 1 (Byte 0)

Bit	Description	Remedy
0	1: DP slave cannot be addressed by DP master.	 Is the correct DP address set on the DP slave? Is the bus connector inserted?
		 Does the DP slave have power?
		• Is the RS 485 repeater correctly set?
		• Execute a Reset on the DP slave.
1	1: DP slave is not ready for data interchange.	• Wait; the DP slave is still doing its run-up.
2	1: The configuration data which the DP master sent to the DP slave do not correspond with the DP slave's actual configuration.	 Was the software set for the right station type or the right DP slave configuration?
3	1: Diagnostic interrupt, generated by a RUN/STOP transition on the CPU	• You can read out the diagnostic data.
	0: Diagnostic interrupt, generated by a STOP/RUN transition on the CPU	
4	1: Function is not supported, for instance changing the DP address at the software level.	Check the configuring data.
5	0: This bit is always "0".	-
6	1: DP slave type does not correspond to the software configuration.	 Was the software set for the right station type? (parameter assignment error)
7	1: DP slave was parameterized by a different DP master to the one that currently has access to it.	 Bit is always "1" when, for instance, you are currently accessing the DP slave via the PG or a different DP master.
		The DP address of the master that parameterized the slave is located in the "Master PROFIBUS address" diagnostic byte.

Station Status 2

Table 9-11 Structure of Station Status 2 (Byte 1)

Bit	Description		
0	1: DP slave must be parameterized again and reconfigured.		
1	1: A diagnostic message has arrived. The DP slave cannot continue operation until the error has been rectified (static diagnostic message).		
2	1: This bit is always "1" when there is a DP slave with this DP address.		
3	1: The watchdog monitor has been activated for this DP slave.		
4	0: This bit is always "0".		
5	0: This bit is always "0".		
6	0: This bit is always "0".		
7	1: DP slave is deactivated, that is to say, it has been removed from the scan cycle.		

www.DataSheet4U.com

Station Status 3

Table 9-12 Structure of Station Status 3 (Byte 2)

Bit		Description		
0				
to	0:	0: These bits are always "0".		
6				
7	1:	1: • More diagnostic messages have arrived than the DP slave can buffer.		
		• The DP master cannot enter all the diagnostic messages sent by the DP slave in its diagnostic buffer.		

9.5.6 Master PROFIBUS Address

Definition

The DP address of the DP master is stored in the master PROFIBUS address diagnostic byte:

- The master that parameterized the DP slave
- The master that has read and write access to the DP slave

ww.DataSheet4U.com

Master PROFIBUS address

Table 9-13 Structure of the Master PROFIBUS Address (Byte 3)

Bit	Description	
0 to 7	DP address of the DP master that parameterized the DP slave and has read/write access to that DP slave.	
	FF _H : DP slave was not parameterized by a DP master.	

9.5.7 Manufacturer ID

Definition

The manufacturer identification contains a code specifying the DP slave's type.

Manufacturer Identification

Table 9-14 Structure of the Manufacturer Identification (Bytes 4 and 5)

Byte 4	Byte 5	Manufacturer Identification for	
80 _H	2FH	CPU 315-2 DP	
80 _H	6F _H	CPU 316-2 DP	
80 _H	7F _H	CPU 318-2	

9.5.8 Module Diagnosis

Definition

The module diagnosis specifies which of the configured address areas of the intermediate memory an input has been made for.

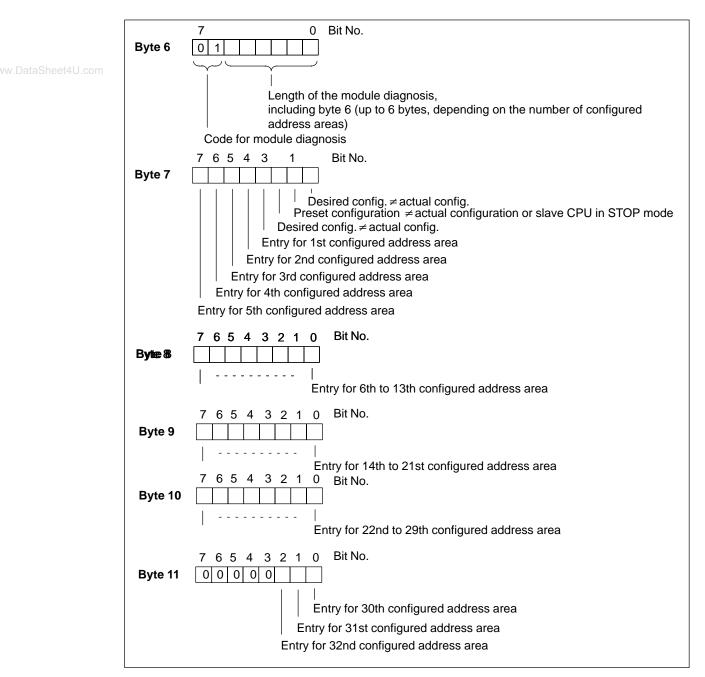


Figure 9-7 Structure of the Module Diagnosis of the CPU 31x-2

9.5.9 Station Diagnosis

Definition

The station diagnosis gives detailed information on a DP slave. The station diagnosis begins as of byte x and can have a maximum of 20 bytes.

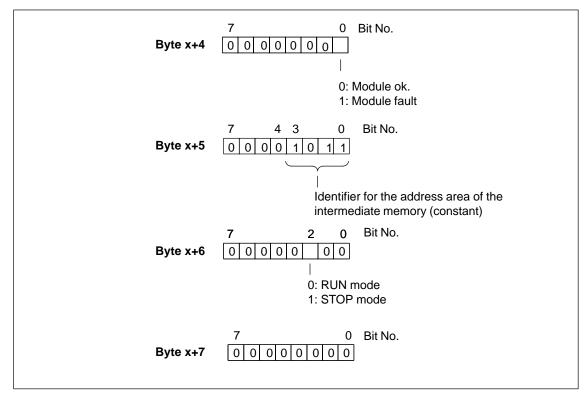
Station Diagnosis

ww.DataSheet4U.com

The following figure describes the structure and content of the bytes for a configured address area of the intermediate memory.

Byte x	7 6 0 Bit No. 0 0 Length of the station diagnosis incl. byte x (= max. 20 bytes) Code for station diagnostics	
Byte x+1	7 0	01 _H : Code for diagnostic interrupt 02 _H : Code for process interrupt
Byte x+2		Number of the configured address area of the intermediate memory The rule is: Number+3 (example: $CPU = 02_H$ Address area 1 = 04_H Address area 2 = 05_H etc.)
Byte x+3	0 0 0 0 0 0 0 0	(Always 0)
Byte x +4 to byte x +7		Diagnostic data (see Figure 9-9) or interrupt data

Figure 9-8 Structure of the Station Diagnosis


As of byte x +4

The purpose of the bytes beginning with byte x+4 depends on byte x+1 (see Figure 9-8).

Byte x+1 Contains the Code for		
Diagnostic Interrupt (01 _H) Process Interrupt (02 _H)		
The diagnostic data contain the 16 bytes of status information from the CPU. Figure 9-9 shows the contents of the first four bytes of diagnostic data. The next 12 bytes are always 0.	For a process interrupt, you can program four bytes of interrupt information. These four bytes are forwarded to the DP master in <i>STEP 7</i> with the SFC 7 command "DP_PRAL" (see Section 9.5.10).	

Bytes x+4 to x+7 for Diagnostic Interrupts

Figure 9-9 shows the configuration and contents of bytes x + 4 to x + 7 for diagnostic interrupt. The contents of these bytes correspond to the contents of data record 0 of the diagnostic data in *STEP 7* (in this case, not all bits are assigned).

Figure 9-9 Bytes +4 to +7 for Diagnostic and Process Interrupts

9.5.10 Interrupts

Interrupts with the S7/M7 DP Master

In the CPU 31x-2 as DP slave you can trigger a process interrupt in the DP master from the user program. OB 40 is called in the DP master's user program by calling SFC 7 "DP_PRAL". SFC 7 allows you to forward interrupt information in a doubleword to the DP master; this information can then be evaluated in OB 40 in variable OB40_POINT_ADDR. You can program the interrupt information as desired. A detailed description of SFC 7 "DP_PRAL" can be found in the reference manual entitled *System Software S7-300/400 - System and Standard Functions.*

Interrupts with Another DP Master

If you are running the CPU 31x-2 with another DP master, these interrupts are reflected in the station diagnosis of the CPU 31x-2. You must postprocess the relevant diagnostic events in the DP master's user program.

Note

Note the following in order to be able to evaluate diagnostic interrupts and process interrupts via the device-related diagnostics when using a different DP master:

- The DP master should be able to store the diagnostic messages, that is, the DP master should have a ring buffer in which to place these messages. If the DP master can not store diagnostic messages, only the last diagnostic message would be available for evaluation.
- You must scan the relevant bits in the device-related diagnostic data in your user program at regular intervals. You must also take the PROFIBUS-DP's bus cycle time into consideration so that you can scan the bits at least once in sync with the bus cycle time, for example.
- When using an IM 308-C as DP master, you can not utilize process interrupts in device-related diagnostics, as only incoming interrupts can be signaled, not outgoing interrupts.

9.6 Parameter Assignment Frame and Configuration Frame

With STEP 7

When you configure and parameterize the address areas of the intermediate memory of the CPU 31x-2 with *STEP 7*, *STEP 7* and the online help system support you.

With COM PROFIBUS

When you configure and parameterize the address areas of the intermediate memory of the CPU 31x-2 with *COM PROFIBUS* V 4.0, *COM PROFIBUS* and the online help system support you.

Configuration/Parameterization

When you enter the address areas of the intermediate memory of the CPU 31x-2 using a configuration frame and a parameter assignment frame, e.g. CP 342-5 in an S7-300 or CP 5431 as DP master or another DP master, you will find the structure of the configuration frame and the parameter assignment frame in the following sections.

In This Section

The following section contains all the information you need to configure and parameterize the address areas of the intermediate memory with a software tool.

Section	Contents			
9.6.1	Structure of the Parameter Assignment Frame	9-30		
9.6.2	Structure of the Configuration Frame (S7 Format)	9-32		
9.6.3	Structure of the Configuration Frame for Non-S7 DP Masters	9-34		

9.6.1 Structure of the Parameter Assignment Frame

Definition: Parameter Assignment Frame

All the values of a DP slave that can be parameterized are stored in the parameter assignment frame. The length of the parameter assignment frame may not exceed 178 bytes.

Structure of the Parameter Assignment Frame

The length of the parameter assignment frame for the CPU 31x-2 is 10 bytes:

- Standardized portion (bytes 0 to 6)
- Parameters of the CPU 31x-2 (bytes 7 to 9).

Standard Part

The first seven bytes of the parameter assignment frame are standardized to EN 50170; for the CPU 315-2, for example, they can have the following contents:

Byte 0	88 _H	Station status
Byte 1	01 _H	WD factor 1
Byte 2	06 _H	WD factor 2
Byte 3	0B _H	T _{RDY}
Byte 4	80 _H	Manufacturer identification high byte
Byte 5	2F _H	Manufacturer identification low byte
Byte 6	00 _H	Group identification

Figure 9-10 Standardized Portion of the Parameter Assignment Frame (Example)

Configuration of the Parameters for the CPU 31x-2

The length of the parameters for the CPU 31x-2 is 3 bytes: The default assignment for these 3 bytes is: $C0_H 60_H 00_H$.

The parameters have the following meanings:

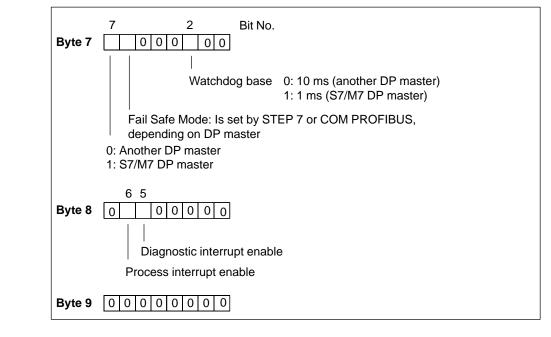


Figure 9-11 Parameters for the CPU 31x-2

ww.DataSheet4U.con

9.6.2 Structure of the Configuration Frame (S7 Format)

Structure of the Configuration Frame

The length of the configuration frame depends on the number of address areas configured for the CPU's intermediate memory. The first 15 bytes in the configuration frame are reserved. The format of the configuration frame is as follows:

www.DataSheet4U.comTable 9-15 Structure of the Configuration Frame

	Byte					
Configured Address Area	n	n + 1	n + 2	n + 3	n + 4	
	04	00	00	AD	C4	
These bytes are reserved:	04	00	00	8B	41	
	04	00	00	8F	C0	
1st configured address area (n = 15)		·				
2nd configured address area (n = 20)		Se	ee Table 9-	16		
32nd configured address area (n = 170)						

Identifiers for the Address Areas

The identifiers for configuring depend on the type of the address area. Table 9-16 lists all the identifiers for the address areas.

 Table 9-16
 Identifiers for the Address Areas of the Intermediate Memory

	Identifiers (hexadecimal)					
Address Area	Special identifier format	Length byte	Manufacturer-specific data Comment length = 3			
	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	
Input	See Figure 9-12	See	00 _H	83 _H	40 _H	
Output	9-12	Figure 9-13	00 _H	93 _H	40 _H	

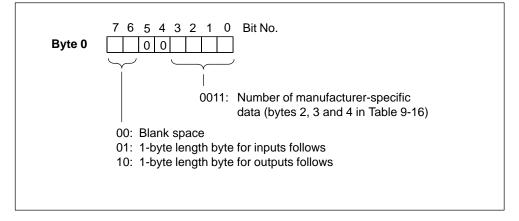


Figure 9-12 Description of Byte 0 of the CPU's Address Area Identifiers

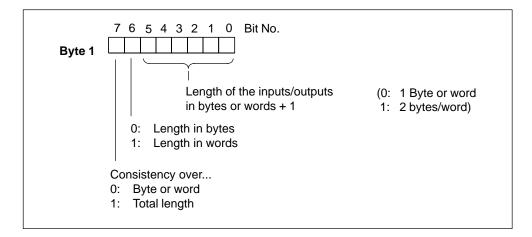


Figure 9-13 Description of Byte 1 of the CPU's Address Area Identifiers

ww.DataSheet4U.com

Example of a Configuration Frame

Below is a sample configuration frame for the CPU 315-2 DP.

Format:

- A power supply module
- The CPU 315-2 DP
- An address area in the DP master (= output address area in the DP slave), two bytes in length and with consistency over the entire area

The configuration frame thus comprises 20 bytes and looks like this:

04 00 00 AD C4 04 00 00 8B 41 04 00 00 8F C0 43 81 00 83 40

\sim	\sim	\sim	\sim
Permanent	Permanent	Permanent	1st configured input
value	value	value	address area of the
			CPU's intermediate
			memory

9.6.3 Structure of the Configuration Frame for Non-S7 DP Masters

Type/Device Master File

If your DP master does not support the configuration frame in S7 format (see Section 9.6.2), you can obtain a type/device master file in non-S7 format by calling the **SSC** (Interface Center) Fuerth.

The device master file can be obtained via modem from the **SSC** (Interface Center) Fuerth by calling +49/911/737972.

Structure of the Configuration Frame

The length of the configuration frame depends on the number of address areas configured for the CPU's intermediate memory. The first three bytes of the configuration frame are always "0". The format of the configuration frame is as follows:

In this format, you can only configure a length of no more than 16 bytes or 16 words. For a length of 32 bytes, you would thus have to configure a length of 16 words.

Configured Address Areas	Byte	
1.		
2.	0000000	
3.	0000000	
4.	7 6 5 4 3 2 1 0 Bit No.	
:	Length of the inputs/outputs in bytes or words 01: Inputs	
:	10: Outputs0: Length in bytes	
32nd	 1: Length in words Consistency over 0: Byte or word 1: Total length 	

Sheet4U.com Table 9-17 Structure of the Configuration Frame for Non-S7 DP Masters

9.7 Direct Communication

As of *STEP 7* V 5.x you can configure direct communication for PROFIBUS nodes. The CPU 31x-2 can take part in direct communication as the sender or receiver.

Direct communication is a special communication relationship between PROFIBUS-DP nodes.

Principle

ww.DataSheet4U.com

Direct communication is characterized by the fact that the PROFIBUS-DP nodes listen in to find out which data a DP slave is sending back to its DP master. Using this function the eavesdropper (receiver) can directly access changes in the input data of remote DP slaves.

During configuration in *STEP 7*, in addition to defining the relevant I/O input addresses, you can also define which of the receiver's address areas the required data from the sender will be read to.

A CPU 31x-2 can be one of the following:
Sender as DP slave
Receiver as DP slave or DP master or as CPU not included in a master system (see Figure 9-14).

Example

Figure 9-14 gives you an example of the direct communication relationships you can configure. In the figure all the DP masters and DP slaves are CPU 31x-2s. Note that other DP slaves (ET 200M, ET 200X, ET 200S) can only be senders.

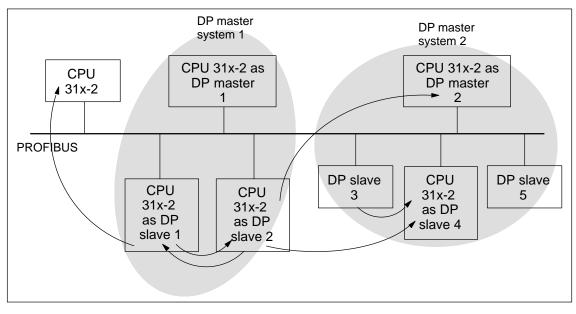


Figure 9-14 Direct Communication with CPU 31x-2

9.8 Diagnostics in Direct Communication

Diagnostic Addresses

In direct communication you allocate a diagnostic address in the receiver:

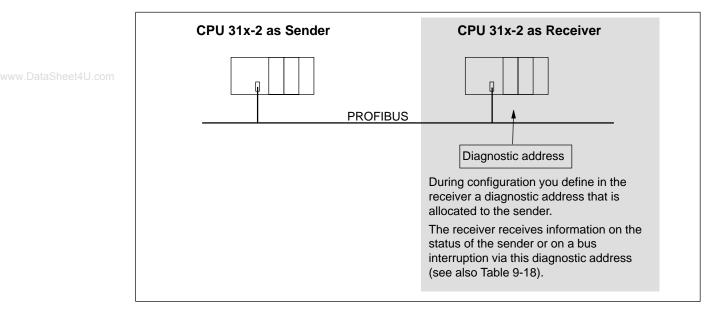


Figure 9-15 Diagnostic Address for the Receiver During Direct Communication

Event Detection

Table 9-18 shows how the CPU 31x-2 as receiver detects interruptions in the transfer of data.

Table 9-18 Event Detection of the CPU 31x-2 as Receiver During Direct Communication

Event	What Happens in the Receiver
Bus interruption (short-circuit, plug pulled)	 OB 86 is called and <i>Station failure</i> reported (incoming event; diagnostic address of the receiver, assigned to the sender)
	 In the case of I/O access: OB 122 is called (I/O access error)

Evaluation in the User Program

Table 9-19 shows you how you can, for example, evaluate the station failure of the sender in the receiver (see also Table 9-18).

Table 9-19 Evaluation of the Station Failure of the Sender During Direct Communication

In the Sender	In the Receiver
Diagnostic addresses: (example) Master diagnostic address=1023 Slave diagnostic address in the master system=1022	Diagnostic address: (example) Diagnostic address=444
Station failure	 The CPU calls OB 86 with the following information: OB 86_MDL_ADDR:=444 OB86_EV_CLASS:=B#16#38 (incoming event) OB86_FLT_ID:=B#16#C4 (failure of a DP station) Tip: This information is also in the CPU's diagnostic buffer

Cycle and Response Times of the S7-300

Introduction

ww.DataSheet4U.com

In this section, we explain what the cycle time and the response time of the S7-300 consist of.

You can use the programming device to read out the cycle time of your user program on the CPU (see the *STEP 7 online help system*).

The example below shows you how to calculate the cycle time.

The response time is more important for the process. In this chapter we will show you in detail how to calculate the response time.

In This Chapter

Section	Contents	Page
10.1	Cycle Time	10-2
10.2	Response Time	10-3
10.3	Calculation Example for Cycle Time and Response Time	10-10
10.4	Interrupt Response Time	10-14
10.5	Calculation Example for the Interrupt Response Time	10-16
10.6	Reproducibility for Delay and Watchdog Interrupt	10-16

Further Information

You will find further information on the processing times in ...

- ... the *S7-300 instruction list*. There you will find all the *STEP 7* instructions which can be processed on the various CPUs, together with their execution time.
-see Appendix C. Here you will find a list of all the SFCs/SFBs integrated in the CPUs, as well as the *STEP 7* IEC functions and their execution times.

10.1 Cycle Time

Cycle Time – A Definition

The cycle time is the time that elapses during one program cycle.

Component Parts of the Cycle Time

The cycle time comprises:

ww.DataSheet4U.com

Factors	Remarks			
Operating system execution time				
Process image transfer time (PII and PIQ)	See Section 10.2			
User program execution time	Can be calculated on the basis of the execution times of the individual instructions (see the <i>S7-300 Instruction List</i>) and a CPU-specific factor (see Table 10-3)			
S7 timer (not in the case of the CPU 318-2)				
PROFIBUS DP	See Section 10.2			
Integrated functions				
Communication via the MPI	You parameterize the maximum permissible cycle load produced by communication in percent in <i>STEP 7</i>			
Loading through interrupts	See Sections 10.4 and 10.5			

Figure 10-1 shows the component parts of the cycle time

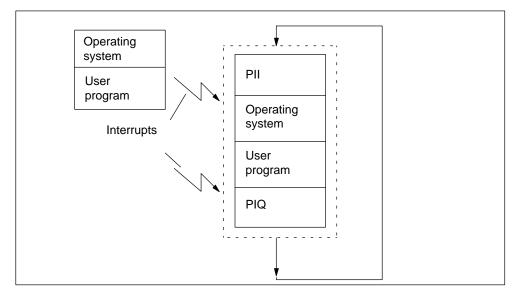


Figure 10-1 Component Parts of the Cycle Time

Extending the Cycle Time

Note that the cycle time of a user program is extended by the following:

- Time-controlled interrupt handling
- Process interrupt handling (see also Section 10.4)
- Diagnostics and error handling (see also Section 10.4)
- Communication via MPI

10.2 Response Time

Response Time – A Definition

The response time is the time between detection of an input signal and modification of an associated output signal.

Factors

The response time depends on the cycle time and the following factors:

Factors	Remarks
Delay of the inputs and outputs	The delay times are given in the technical specifications
	In the <i>Module Specifications</i> Reference Manual for the signal modules
	 In Section 8.4.1 for the integrated inputs/outputs of the CPU 312 IFM.
	 In Section 8.4.4 for the integrated inputs/outputs of the CPU 314 IFM.
Additional bus runtimes on the PROFIBUS subnet	CPU 31x-2 DP only

Range of Fluctuation

The actual response time lies between a shortest and a longest response time. You must always reckon on the longest response time when configuring your system.

The shortest and longest response times are considered below to let you get an idea of the width of fluctuation of the response time.

Shortest Response Time

Delay of the inputs The status of the observed input changes ΡII immediately before reading in the PII. The change in the input signal is therefore taken account of in the PII. Operating Response Time system The change in the input signal is processed User by the user program here. program The response of the user program to the PIQ input signal change is passed on to the outputs here. Delay of the outputs

Figure 10-2 shows you the conditions under which the shortest response time is reached.

ww.DataSheet4U.com

Figure 10-2 Shortest Response Time

Calculation

The (shortest) response time consists of the following:

- 1 \times process image transfer time for the inputs +
- 1 × operating system execution time +
- 1 × program execution time +
- 1 × process image transfer time for outputs +
- Execution time of S7 timer
- Delay of the inputs and outputs

This corresponds to the sum of the cycle time and the delay of the inputs and outputs.

Longest Response Time

Figure 10-3 shows the conditions that result in the longest response time.

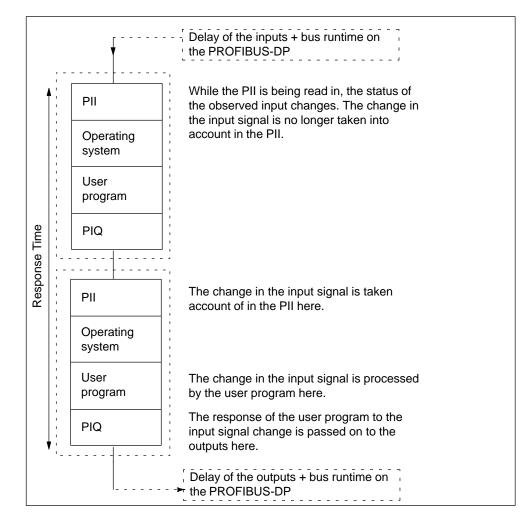


Figure 10-3 Longest Response Time

Calculation

The (longest) response time consists of the following:

- $2 \times$ process image transfer time for the inputs +
- $2 \times$ process image transfer time for the outputs +
- 2 × operating system execution time +
- 2 × program execution time +
- 2 × Bus runtime on the PROFIBUS-DP bus system (with CPU 31x-2 DP)
- Execution time of the S7 timer +
- · Delay of the inputs and outputs

This corresponds to the sum of the double cycle time and the delay of the inputs and outputs plus the double bus runtime.

Operating System Processing Time

Table 10-1 contains all the times needed to calculate the operating system processing times of the CPUs.

The times listed do not take account of

- Test functions, e.g. monitor, modify
- Functions: Load block, delete block, compress block
- Communication

Table 10-1 Operating System Processing Times of the CPUs

Sequence	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU
	312 IFM	313	314	314 IFM	315	315-2 DP	316-2 DP	318-2
Cycle control	600 to	540 to	540 to	770 to	390 to	500 to	500 to	200 to
	1200 μs	1040 μs	1040 μs	1340 μs	820 μs	1030 μs	1030 μs	340 ms

Process Image Update

Table 10-2 lists the CPU times for the process image update (process image transfer time). The times specified are "ideal values" which are prolonged by interrupts or by communication of the CPU. (Process image = PI)

The CPU time for the process image update is calculated as follows:

- K + number of bytes in the PI in rack "0" \times A
 - + number of bytes in the PI in racks "1 to 3" B
 - + number of bytes in the PI via DP D
 - = Process image transfer time

ww.DataSheet4U.com

	Components	CPU 312 IFM	CPU 313	CPU 314	CPU 314 IFM	CPU 315	CPU 315-2 DP	CPU 316-2 DP	CPU 318-2
Κ	Base load	162 μs	142 μs	142 μs	147 μs	109 μs	10 µs	10 μs	20 µs
A	For each byte in rack "0"	14.5 μs	13.3 μs	13.3 μs	13.6 μs	10.6 μs	20 μs (per word)	20 μs (per word)	6 µs
В	For each byte in racks "1 to 3"	16.5 μs	15.3 μs	15.3 μs	15.6 μs	12.6 μs	22 μs (per word)	22 μs (per word)	12.4 μs
D	For each byte in DP area for integrated DP interface	_	_	_	_	_	12 μs (per word)	12 μs (per word)	1 μs

Table 10-2	Process	Image	Update of CPUs
------------	---------	-------	----------------

User Program Processing Time:

The user program processing time is made up of the sum of the execution times for the instructions and the SFB/SFCs called up. These execution times can be found in the Instruction List. Additionally, you must multiply the user program processing time by a CPU-specific factor. This factor is listed in Table 10-3 for the individual CPUs.

Table 10-3 CPU-specific Factors for the User Program Processing Time

Se- quence	CPU 312 IFM	CPU 313	CPU 314	CPU 314 IFM	CPU 315	CPU 315-2 DP	CPU 316-2 DP	CPU 318-2
Factor	1,23	1,19	1,15	1,15	1,15	1,19	1,19	1,025

S7 timers

In the case of the CPU 318-2, the updating of the S7 timers does not extend the cycle time.

The S7 timers are updated every 10 ms.

You can find out in Section 10.3 how to include the S7 timers in calculations of the cycle and response times.

Table 10-4 Updating the S7 Timers

Sequence	312 IFM	313	314	314 IFM	315	315-2 DP	316-2 DP
Updating the S7 timers (every 10 ms)	Number of simulta- neously active S7 timers × 10 μs	Number o	f simultane	ously active	e S7 timers	s × 8 μs	

PROFIBUS-DP interface

In the case of the CPU 315-2 DP/316-2 DP, the cycle time is typically extended by 5% when the PROFIBUS-DP interface is used.

In the case of the CPU 318-2, there is no increase in cycle time when the PROFIBUS-DP interface is used.

Integrated functions

/ww.DataSheet4U.com

In the case of the CPU 312-IFM and the CPU 314-IFM, the cycle time is increased by a maximum of 10 % when integrated functions are used. In addition, you must, where applicable, take into account the update of the instance DB at the scan cycle checkpoint.

Table 10-5 shows the update times of the instance DB at the scan cycle checkpoint, together with the corresponding SFB runtimes.

Table 10-5 Update Time and SFB Runtimes

CPU 312 IFM/314 IFM	Update Time of the Instance DB at the Scan Cycle Checkpoint	SFB Runtime
IF Frequency measurement (SFB 30)	100 μs	220 μs
IF Counting (SFB 29)	150 μs	300 μs
IF Counting (Parallel counter) (SFB 38)	100 μs	230 μs
IF Positioning (SFB 39)	100 μs	150 μs

Delay of the Inputs and Outputs

You must take account of the following delay times, depending on the module:

- For digital inputs: The input delay time
- · For digital outputs: Negligible delay times
- For relay outputs: Typical delay times of between 10 ms and 20 ms. The delay of the relay outputs depends, among other things, on the temperature and voltage.
- For analog inputs: Cycle time of the analog input
- For analog outputs: Response time of the analog output

Bus Runtimes in the PROFIBUS Subnet

When you have configured your PROFIBUS subnet using *STEP 7*, *STEP 7* will calculate the typical bus runtime to be expected. You can then display the bus runtime of your configuration on the programming device (see *STEP 7 User Manual*).

An overview of the bus runtime is provided in Figure 10-4. In this example, we assume that each DP slave has an average of 4 bytes of data.

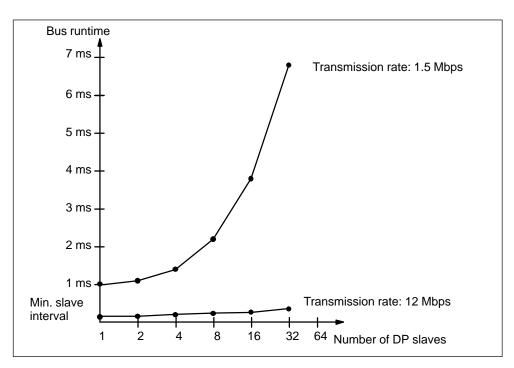


Figure 10-4 Overview of the Bus Runtime on PROFIBUS-DP at 1.5 Mbps and 12 Mbps

If you run a PROFIBUS subnet with several masters, you must allow for the bus runtime of each master (i.e. total bus runtime = bus runtime \times number of masters).

Extending the Cycle by Nesting Interrupts

Table 10-6 shows typical extensions of the cycle time through nesting of an interrupt. The program runtime at the interrupt level must be added to these. If several interrupts are nested, the corresponding times need to be added.

Interrupts	312 IFM	313	314	314 IFM	315	315-2 DP	316-2 DP	318-2
Process interrupt	approx. 840 μs	approx. 700 μs	approx. 700 μs	approx. 730 μs	approx. 480 μs	approx. 590 μs	approx. 590 μs	approx. to 340ms
Diagnostic interrupt	_	approx. 880 μs	approx. 880 μs	approx. 1000 μs	approx. 700 μs	approx. 860 μs	approx. 860 μs	approx. 450 μs
Time-of- day interrupt	-	-	approx. 680 μs	approx. 700 μs	approx. 460 μs	approx. 560 μs	approx. 560 μs	approx. 350 μs
Delay interrupt	_	-	approx. 550 μs	approx. 560 μs	approx. 370 μs	approx. 450 μs	approx. 450 μs	approx. 260 μs
Watchdog interrupt	_	_	approx. 360 μs	approx. 380 μs	approx. 280 μs	approx. 220 μσ	approx. 220 μσ	approx. 260 μs
Program- ming/ access error/ program execution error	-	approx. 740 μs	approx. 740 μs	approx. 760 μs	approx. 560 μs	approx. 490 μs	approx. 490 μs	approx. 130/ 155/ 285 μs

 Table 10-6
 Extending the Cycle by Nesting Interrupts

10.3 Calculation Examples for Cycle Time and Response Time

Component Parts of the Cycle Time

Remember: The cycle time consists of the following:

- Process image transfer time +
- · Operating system processing time +
- User program processing time +
- Processing time of S7 timers

Sample Configuration 1

You have configured an S7-300 with the following modules on one rack:

- 1 CPU 314
- 2 SM 321 DI 32 × DC 24 V digital input modules (4 bytes each in the PI)
- 2 SM 322 DO 32 × DC 24 V/0.5A digital output modules (4 bytes each in the PI)

According to the Instruction List, the user program has a runtime of 1.5 ms. There is no communication.

eet4U.com Calcul

Calculation

In this example, the cycle time is calculated from the following times:

- Process image transfer time Process image of the inputs: 147 μ s + 8 bytes × 13.6 μ s = ca. **0.26 ms** Process image of the outputs: 147 μ s + 8 bytes × 13.6 μ s = ca. **0.26 ms**
- Operating system runtime

Cyclic control: approx. 1 ms

• User program processing time:

approx. 1.5 ms × CPU-specific factor 1.15 = approx. 1.8 ms

Processing time of S7 timers

Assumption: 30 S7 timers are in operation.

For 30 S7 timers, the single update takes

 30×8 ms = 240 μ s.

Adding the process image transfer time, the operating system processing time and the user program processing time gives us the time interval:

0.26 ms + 0.26 ms + 1 ms + 1.8 ms = 3.32 ms.

Since the S7 timers are called every 10 ms, a maximum of one call can be made in this time interval, i.e. the cycle time can be increased through the S7 timers by a maximum of 240 $\mu s.$

The cycle time is calculated from the sum of the listed times:

Cycle time= 0.26 ms + 0.26 ms + 1 ms + 1.8 ms + 0.024 ms = 3.34 ms

Parts of the Response Time

Remember: The response time is the sum of the following:

- 2 × process image transfer time of the inputs +
- $2 \times$ process image transfer time of the outputs +
- 2 × operating system processing time +
- 2 × program processing time +
- Processing time of the S7 timers +
- · Delay times of the inputs and outputs

Tip: Simple calculation: Calculated cycle time \times 2 + delay times.

For sample configuration 1 the following therefore applies: 3.34 ms \times 2 + delay timesl/O modules.

Sample Configuration 2

You have configured an S7-300 with the following modules on two racks:

- 1 CPU 314
- 4 SM 321 DI 32 × DC 24 V digital input modules (4 bytes each in the PI)
- 3 SM 322 DO 16 \times DC 24 V/0.5A digital output modules (2 bytes each in the process image)
- 2 SM 331 AI 8 × 12Bit analog input modules (not in the process image)
- 2 SM 332 AOI 4 × 12Bit analog output modules (not in the process image)

User program

According to the Instruction List, the user program has a runtime of 2 ms. By taking into account the CPU-specific factor of 1.15, the resulting runtime is approx. 2.3 ms. The user program employs up to 56 S7 timers simultaneously. No activities are required at the scan cycle checkpoint.

Calculation

In this example, the response time is calculated from the following times:

• Process image transfer time

Process image of the inputs: $147 \ \mu s + 16 \ bytes \times 13.6 \ \mu s = ca.$ **0.36 ms** Process image of the outputs: $147 \ \mu s + 6 \ bytes \times 13.6 \ \mu s = ca.$ **0.23 ms**

- Operating system processing time Cyclic control: approx. 1 ms
- User program processing time: 2.3 ms

vw.DataSheet4U.com

 1st intermediate calculation The time base for calculating the processing time of the S7 timers is the sum of all previously listed times:

2×0.36 ms	(process image transfer time of inputs)	
+ 2×0.23 ms	(process image transfer time of outputs)	+
2×1 ms	(operating system processing time)	+
2×2.3 ms	(user program processing time) \approx 7.8 ms .	

• Processing time of S7 timers

A one-off update of 56 S7 timers takes $56 \times 8 \ \mu s = 448 \ \mu s \approx 0.45 \ ms.$

Since the S7 timers are called every 10 ms, a maximum of one call can be made in the cycle time, i.e. the cycle time can be increased through the S7 timers by a maximum of 0.45 ms.

• **2nd intermediate calculation:** The response time **excluding** the delay times of the inputs and outputs is calculated from the sum of:

8.0 ms	(result of the first subtotal)
+ 0.45 ms	(processing time of the S7 timers)
=8.45 ms.	

- · Delay times of the inputs and outputs
 - The SM 321 DI 32×DC 24 V digital input module has an input delay of 4.8 ms per channel.
 - The output delay of the SM 322; DO 16 × DC 24 V/0.5A digital output group can be ignored.
 - The SM 331; AI 8×12Bit analog input module was parameterized for interference frequency suppression of 50 Hz. This yields a conversion time of 22 ms per channel. Since 8 channels are active, the cycle time for the analog input module is **176 ms**.
 - The SM 332; AO 4×12Bit analog output module was parameterized for the measurement range 0 ...10V. The conversion time is **0.8 ms** per channel. Since 4 channels are active, a cycle time of 3.2 ms is obtained. A settling time of 0.1 ms for a resistive load must be added to this figure. This yields a response time of **3.3 ms** for an analog output.
- Response times with delay times for inputs and outputs:
- **Case 1:** An output channel of the digital output module is set when a digital input signal is read in. This results in a response time of:

Response time = 4.8 ms + 8.45 ms = 13.25 ms.

• **Case 2** An analog value is read in and an analog value is output. This results in a response time of:

Response time = 176 ms + 8.45 ms + 3.3 ms = 187.75 ms.

ww.DataSheet4U.com

10.4 Interrupt Response Time

Interrupt Response Time – A Definition

The interrupt response time is the time that elapses between the first occurrence of an interrupt signal and the calling of the first instruction in the interrupt OB.

The following rule generally applies: High-priority interrupts are executed first. This means the interrupt response time is increased by the program processing time of the higher-priority interrupt OBs and the interrupt OBs of equal priority that have not yet been executed.

/ww.DataSheet4U.com

Calculation

The interrupt response time is calculated as follows:

Shortest interrupt response time =

Minimum interrupt response time of the CPU + Minimum interrupt response time of the signal modules + Bus runtime on the PROFIBUS-DP

Longest interrupt response time =

Maximum interrupt response time of the CPU + Maximum interrupt response time of the signal modules + $2 \times$ bus runtime on the PROFIBUS-DP bus system

Process Interrupt Response Time of the CPUs

Table 10-7 lists the process interrupt response times of the CPUs (without communication).

Table 10-7 Process Interrupt Response Times of the CPUs

CPU	Min.	Max.
312 IFM	0.6 ms	1.5 ms
313	0.5 ms	1.1 ms
314	0.5 ms	1.1 ms
314 IFM	0.5 ms	1.1 ms
315	0.3 ms	1.1 ms
315-2 DP	0.4 ms	1.1 ms
316-2 DP	0.4 ms	1.1 ms
318-2	0.23 ms	0.41 ms

Diagnostic Interrupt Response Times of the CPUs

Table 10-8 lists the diagnostic interrupt response times of the CPUs (without communication).

CPU	Min.	Max.
312 IFM	-	-
313	0.6 ms	1.3 ms
314	0.6 ms	1.3 ms
314 IFM	0.7 ms	1.3 ms
315	0.5 ms	1.3 ms
315-2 DP	0.6 ms	1.3 ms
316-2 DP	0.6 ms	1.3 ms
318-2	0.32 ms	0.52 ms

Table 10-8 Diagnostic Interrupt Response Times of the CPUs

ww.DataSheet4U.com

Signal Modules

The process interrupt response time of the signal modules is composed of the following components:

• Digital input modules

Process interrupt response time = internal interrupt preparation time + input delay

You will find the times in the data sheet for the individual analog input module.

· Analog input modules

Process interrupt response time = internal interrupt preparation time + conversion time

The internal interrupt preparation time for the analog input modules is negligible. The conversion times can be found in the data sheet for the individual digital input modules.

The diagnostic interrupt response time of the signal modules is the time that elapses between the detection of a diagnostic event by the signal module and the triggering of the diagnostics interrupt by the signal module. This time is negligible.

Process Interrupt Handling

Process interrupt handling begins when the process interrupt OB 40 is called. Higher-priority interrupts cause the process interrupt handling routine to be interrupted. Direct accesses to the I/O are made at the execution time of the instruction. When the process interrupt handling routine has finished, either cyclic program execution continues or further same-priority or lower-priority interrupt OBs are called up and executed.

10.5 Calculation Example for the Interrupt Response Time

Parts of the Interrupt Response Time

Remember: The process interrupt response time consists of the following:

- · The process interrupt response time of the CPU and
- The process interrupt response time of the signal module.

Example: You have configured an S7-300 with a CPU 314 and four digital modules. One digital input module is the SM 321; DI $16 \times DC 24V$; with process and diagnostic interrupt. You have only enabled the process interrupt when setting the parameters for the CPU and the SM. You decided not to use time-controlled processing, diagnostics or error handling. You configured an input delay of 0.5 ms for the digital input module. No activities are necessary at the scan cycle checkpoint. There is no communication via the MPI.

Calculation

The process interrupt response time in this example is calculated from the following times:

- Process interrupt response time of the CPU 314: approx. 1.1 ms
- Process interrupt response time of the SM 321; DI 16 × DC 24V:
 - Internal interrupt preparation time: 0.25 ms
 - Input delay 0.5 ms

The process interrupt response time is calculated from the sum of the listed times:

Process interrupt response time = 1.1 ms + 0.25 ms + 0.5 ms = approx. **1.85 ms**.

This process interrupt response time elapses from the time a signal is applied to the digital input until the first instruction in OB 40.

10.6 Reproducibility of Delay and Watchdog Interrupts

Reproducibility – A Definition

Delay Interrupt:

The interval between the call-up of the first instruction in the OB and the programmed time of the interrupt.

Watchdog Interrupt:

The fluctuation of the time interval between two successive call-ups, measured in each case between the first instruction in the OB.

Reproducibility

Table 10-9 lists reproducibility of the delay and watchdog interrupts of the CPUs (without communication).

T	D 1 11 11 11 1			
Table 10-9	Reproducibility of	the Delay and W	atchdog Interrupts of	the CPUs

CPU	Reproducibility	
	Delay Interrupt	Watchdog Interrupt
314	approx1/+0.4 ms	approx. ±0.2 ms
314 IFM	approx1/+0.4 ms	approx. ±0.2 ms
315	approx1/+0.4 ms	approx. ±0.2 ms
315-2 DP	approx1/+0.4 ms	approx. ±0.2 ms
316-2 DP	approx1/+0.4 ms	approx. ±0.2 ms
318-2	approx0.8/+0.34 ms	approx. ±0.05 ms

www.DataSheet4U.com

www.DataSheet4U.com

CPU Functions Dependent on the CPU and **STEP 7** Version

In This Chapter

In this chapter we describe the functional differences between the various CPU versions.

These differences are determined by the following factors:

- By the performance features of the CPUs, especially the CPU 318-2 in comparison with other CPUs.
- By functionality of the CPUs described in this manual in comparison to previous versions.

Section	Contents	Page
11.1	The Differences Between the CPU 318-2 and the CPU 312 IFM to 316-2 DP	11-2
11.2	The Differences Between the CPUs and Their Previous Versions	11-4

11.1 The Differences Between the CPU 318-2 and the CPU 312 IFM to 316-2 DP

4 accumulators

CPU 318-2	CPUs 312 IFM to 316-2 DP
4 accumulators	2 accumulators

ww.DataSheet4U.com

The following table shows you what to watch for if you want to use an STL user program of a CPU 312 IFM to a CPU 316-2 DP for the CPU 318-2.

Instructions	User Program from the CPU 312 IFM to 316-2 DP for the CPU 318
Integer math instructions (+D, -D, *D, /D, MOD)	The CPU 318 transfers the contents of accumulators 3 and 4 to accumulators 2 and 3 after these operations.
	If accumulator 2 is evaluated in the (accepted) user program, you now receive incorrect values with the CPU 318-2 because the value has been overwritten by the contents of accumulator 3.

Configuration

The CPU 318-2 only accepts a project from a CPU 312 IFM to 316-2 DP if it has been created for these CPUs with *STEP 7* V 5.x.

You cannot use programs that contain configuration data for FMs (FM 353/354, for example) or CPs (SDB 1xxx) for the CPU 318-2. You must revise or recreate the relevant project.

Starting a Timer in the User Program

If you start a timer in the user program (with SI T, for example), there must be a number in BCD format in the accumulator of the CPU 318-2.

Global Data Status

CPU 318-2	CPUs 312IFM to 316-2DP
You can specify the global data status from the memory marker/data area.	You can specify the global data status from the I/O area and the memory marker/data area.

MPI Addressing

CPU 318-2	CPUs 312 IFM to 316-2 DP
The CPU addresses the MPI nodes within its configuration (FM/CP) via the module start address.	The CPUs address the MPI nodes within their configuration via the MPI address .
If FM/CP are in the central configuration of an S7-300 with their own MPI address, the CPU forms its own communication bus (via the backplane bus) with the FM/CP, separate from the other subnets. The MPI address of the FM/CP is no longer relevant for the nodes of other subnets. Communication to the FM/CP takes place via the CPU MPI address.	If FM/CP are in the central configuration of an S7-300 with their own MPI address, the FM/CP and CPU MPI nodes are in the same CPU subnet.

You have an S7-300 configuration with FM/CP addressed via the MPI and want to replace the CPU 312 IFM ... 316 with a CPU 318-2. Figure 11-1 on page 11-3 shows an example.

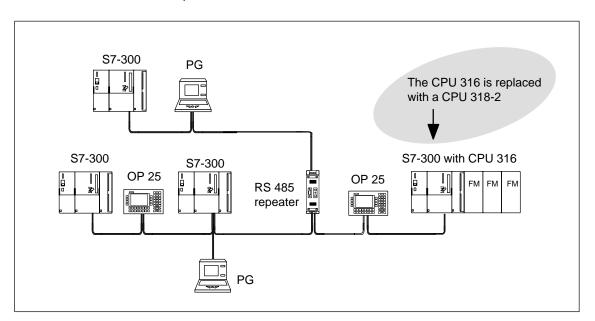


Figure 11-1 Sample Configuration

After the CPUs have been swapped, you must proceed as follows (based on the above example):

- Replace the CPU 316 with the CPU 318-2 in the STEP 7 project.
- Reconfigure the operator panel/programming device. This means reallocating the programmable controller and reassigning the destination address (= MPI address of the CPU 318-2 and the slot of the relevant FM)
- Reconfigure the configuration data for the FM/CP to be loaded onto the CPU.

This is necessary to ensure that the FM/CP in this configuration remain accessible to the operator panel/programming device.

ww.DataSheet4U.com

11.2 The Differences Between the CPUs 312 IFM to 316 and Their Previous Versions

Memory Cards and Backing Up Firmware on Memory Card

As of the following CPUs:

CPU	Order No.	As of Version	
		Firmware	Hardware
CPU 313	6ES7 313-1AD 03- 0AB0	1.0.0	01
CPU 314	6ES7 314-1AE 04- 0AB0	1.0.0	01
CPU 315	6ES7 315-1AF 03- 0AB0	1.0.0	01
CPU 315-2	6ES7 315-2AF 03- 0AB0	1.0.0	01
CPU 316-2	6ES7 316-1AG 00- 0AB0	1.0.0	01

You can:

• Insert the 16 bit-wide memory cards:

256 KB FEPROM	6ES7 951-1KH00-0AA0
1 MB FEPROM	6ES7 951-1KK00-0AA0
2 MB FEPROM	6ES7 951-1KL00-0AA0
4 MB FEPROM	6ES7 951-1KM00-0AA0

· Back up the CPU firmware on memory card

MPI Addressing

You Have a CPU as of Order Number and Version:	You Have a CPU as of Order Number and Version:
6ES7 312-5AC01	-0AB0, version 01
6ES7 313-1AD02	-0AB0, version 01
6ES7 314-1AE03	-0AB0, version 01
6ES7 314-5AE02	-0AB0, version 01
6ES7 315-1AF02	-0AB0, version 01
6ES7 315-2AF02	-0AB0, version 01
6ES7 316-1AG00-0AB0, version 01	_
and STEP 7 as of V4.02	and STEP 7 < V4.02
The CPU accepts the MPI addresses configured by you in <i>STEP 7</i> for the relevant CP/FM in an S7-300 or automatically determines the MPI address of the CP/FM in an S7-300 on the pattern MPI addr. CPU; MPI addr.+1 MPI addr.+2 etc.	The CPU automatically establishes the MPI address of the CP/FM in an S7-300 on the pattern MPI addr. CPU;MPI addr.+1 MPI addr.+2 etc.
CPU CP CP	CPU CP CP Image: CPU Image: CPU Image: CPU I

MPI with 19.2 kbps

With STEP 7 as of V4.02 you can set a transmission rate for the MPI of 19.2 kbps.

The CPUs support 19.2 kbps as of the following order numbers:

6ES7 312-5AC01-0AB0, version 01 6ES7 313-1AD02-0AB0, version 01 6ES7 314-1AE03-0AB0, version 01 6ES7 314-5AE02-0AB0, version 01 6ES7 315-1AF02-0AB0, version 01 6ES7 315-2AF02-0AB0, version 01

CPU 315-2 DP

CPU 315-2 DP	 v 6ES7 315-2AF03-0AB0 and <i>STEP 7</i> < V 5.x 	As of 6ES7 315-2AF03-0AB0 and <i>STEP 7</i> as of V 5.x
Direct communication	No	Yes
Equidistance	No	Yes
Activation/deactivation of DP slaves	No	Yes
Routing	No	Yes
Reading out of slave diagnosis	See Figure 9-1 on page 9-6	See Figure 9-2 on page 9-7

ww.DataSheet4U.com

12

Tips and Tricks

Behavior of the Hardware Clock When the Power Is Off

www.DataSheet4U.com

The following table shows the behavior of the clock when the power of the CPU is off, depending on the backup:

Backup	Clock Behavior
With backup battery	The clock continues to operate in power off mode.
With accumulator	The clock continues to operate in power off mode for the backup time of the accumulator. In POWER ON mode, the accumulator is recharged.
	In the event of backup failure, no error message is generated. At POWER ON, the clock continues to operate using the clock time at which power off took place.
None	At POWER ON, the clock continues to operate using the clock time at which power off took place. Since the CPU is not backed up, the clock does not continue at power off.

Tip on the "Monitoring Time for ..." Parameter in STEP 7

If you are not sure of the required times in the S7-300, parameterize the highest values for the parameters of "Monitoring Time for

- Transfer of parameters to modules"
- Ready message from modules"

CPU 31x-2 DP is DP Master	CPU 318-2 is DP Master
You can also set power-up time monitoring for the DP slaves with the "Transfer of parameters to modules" parameter.	You can set power-up time monitoring for the DP slaves with both of the above parameters.
This means that the DP slaves must be powe DP master) in the set time.	red up and parameterized by the CPU (as

FM in a Distributed Configuration in an ET 200M (CPU 31x-2 is DP Master)

If you use the FM 353/354/355 in an ET 200M with the IM 153-2 and remove and insert the FM in the ET 200M, then you must subsequently turn the power supply of the ET 200M off and on.

The reason for this is that the CPU does not write the new parameters into the FM until power of the ET 200M is switched on.

The Retentive Feature of Data Blocks

You must note the following for the retentivity of data areas in data blocks:

ww.DataSheet4U.com

With Backup Battery	Without Bac	kup Battery			
	CPU program on Memory Card or in the integral EPROM of the 312 IFM/314 IFM	Memory card not plugged in			
All DBs are retentive, whatever parameterization has been performed. The DBs generated using SFC 22 "CREAT_DB" are also	All DBs (retentive, non-retentive) are transferred from the memory card or from the integral EPROM into RAM on restart.	The DBs parameterized as retentive retain their contents			
retentive.	The DBs or data areas gene "CREAT_DB" are not retent	5			
	• After a power failure, the retentive data areas are retained. Note: These data areas are stored in the CPU, not on the memory card. The non-retentive data areas contain whatever has been programmed on EPROM.				

Watchdog Interrupt: Periodicity > 5 ms

For the watchdog interrupt, you should set periodicity > 5 ms. In the case of lower values, the danger of frequent occurrence of watchdog interrupt errors increases depending on, for example, the

- Program execution time of an OB 35 program
- Frequency and program execution time of higher priority classes
- Programming device functions.

Process Interrupt of I/O Modules

In the case of process interrupt-critical applications, insert the process interrupt-triggering modules as near as possible to the CPU. The reason for this is that an interrupt is read most quickly by rack 0, slot 4 and then in ascending order of the slots.

A

Standards, Certificates and Approvals

Introduction

ww.DataSheet4U.com

This Appendix provides the following information on the S7-300 modules and components:

- The most important standards and criteria met by S7-300 and
- Approvals that have been granted for the S7-300.

IEC 1131

The S7-300 programmable controller meets the requirements and criteria to standard IEC 1131, Part 2.

CE Symbol

Our products meet the requirements and protection guidelines of the following EC Directives and comply with the harmonized European standards (EN) issued in the Official Journal of the European Communities with regard to programmable controllers:

- 89/336/EEC "Electromagnetic Compatibility" (EMC Directive)
- 73/23/EEC "Electrical Equipment Designed for Use between Certain Voltage Limits" (Low-Voltage Directive)

The declarations of conformity are held at the address below, where they can be obtained if and when required by the respective authorities:

Siemens Aktiengesellschaft Automation Group A&D AS E 4 P.O. Box 1963 D-92209 Amberg Federal Republic of Germany

EMC Guidelines

SIMATIC products have been designed for use in the industrial area.

They can also be used in residential environments (residential, commercial and light industry) with individual approval. You must acquire the individual approval from the respective national authority or testing body. In Germany individual approval is granted by the Bundesamt für Post und Telekommunikation and its associated offices.

ww.DataSheet4U.com

Area of Application	Require	ements:
	Emitted interference	Immunity
Industry	EN 50081-2 : 1993	EN 50082-2 : 1995
Domestic	Individual approval	EN 50082-1 : 1992

UL Recognition

UL Recognition Mark Underwriters Laboratories (UL) to UL standard 508, Report 116536

CSA Certification

CSA Certification Mark Canadian Standard Association (CSA) to Standard C22.2 No. 142, File No. LR 48323

FM Approval

FM Approval to Factory Mutual Approval Standard Class Number 3611, Class I, Division 2, Group A, B, C, D.

Warning

Personal injury or property damage can result.

In hazardous areas, personal injury or property damage can result if you withdraw any connectors while an S7-300 is in operation.

Always isolate the S7-300 in hazardous areas before withdrawing connectors.

PNO

CPU	Certificate	e No. As
	DP Master	DP Slave
315-2 DP	Z00349	Z00258
316-2 DP		
318-2		

www.DataSheet4U.com

www.DataSheet4U.com

B

OBs

In This Appendix

ww.DataSheet4U.com

In this appendix you will find an overview of which organization blocks can be executed in which CPU.

The operating system of the CPU is designed for event-controlled user program processing. The following table shows which organization blocks (OBs) the operating system invokes in response to which events.

You can find a detailed description of the OBs in the STEP 7 online help system.

	OE	Bs for		Possible Start Events					
Cycle	OB 1	Cycle	1101 _H 1103 _H	OB1 starting event Running OB1 start event (conclusion of the free cycle)	_				
	OB 90	Background OB	1191 _H 1192 _H 1193 _H 1195 _H	OB 90 initiated by Restart Deletion of a block Transfer of a block in RUN mode OB 90 start event	Only 318-2				
Start-up	OB 100	Start-up at STOP-RUN transition	1381 _H 1382 _H	Manual restart requests Automatic restart requests	-				
	OB 102	Cold start	1385 _H 1386 _H	Manual cold-start request Automatic cold-start request	Only 318-2				

		O	3s for		Possible Start Events	Excep- tions
	Inter- rupts	OB 10	Time-of-day interrupt	1111 _H	Time-of-day interrupt event	Not 312 IFM
		OB 11		1112 _H		Only: 318-2
		OB 20	Delay Interrupt	1121 _H	Delay interrupt event	Not 312 IFM
		OB 21		1122 _H		Only: 318-2
DataSheet4U.com		OB 32	Watchdog interrupt	1133 _H	Watchdog interrupt event	Only: 318-2
		OB 35		1136 _H		Not 312 IFM
		OB 40	Process interrupt	1141 _H	Process interrupt	-
		OB 41	-	1141 _H		Only: 318-2
		OB 82	Diagnostic interrupt	3842 _H	Module o. k.	Not
				3942 _H	Module fault	312 IFM
	Error re-	OB 80	Timing error	3501 _H	Cycle time violation	Not
	sponses			3502 _H	OB or FB request error	312 IFM
				3505 _Н	Time-of-day interrupt elapsed due to time jump	
				5505H	Multiple OB request error caused start	
				3507 _H	info buffer overflow	
		OB 81	Power supply error	3822 _H	BAF: Backup voltage returns to CPU	Not
				3922 _H	BAF: No backup voltage in CPU	312 IFM
		OB 85	Program execution	35A1 _H	No OB or FB	Not
			error	35A3 _H	Error during access of a block by the operating system	312 IFM
				39B1 _H	I/O access error during process image updating of the inputs	
				39B2 _H	I/O access error during transfer of the process image to the output modules	
		OB 86	Station failure in PROFIBUS-DP subnet	???	-	Only CPL 31x-2 DF
		OB 87	Communication error	35E1 _H	Incorrect frame identifier in GD	Not
				35E2 _H	GD packet status cannot be entered in DB	312 IFM
				35E6 _H	GD whole status cannot be entered in DB	

	OE	Bs for		Excep- tions		
Error	OB 121	Programming error	2521 _H	BCD conversion error	Not	
respons			2522 _H	Range length error during reading	312 IFM	
es			2523 _H	Range length error during writing		
			2524 _H	Range error during reading		
			2525 _H	Range error during writing		
			2526 _H	Timer number error		
			2527 _H	Counter number error		
			2528 _H	Alignment error during reading		
			2529 _H	Alignment error during writing		
			2530 _H	Write error during access to DB		
			2531 _H	Write error during access to DI		
			2532 _H	Block number error opening a DB		
			2533 _H	Block number error opening a DI		
			2534 _H	Block number error at FC call		
			2535 _H	Block number error at FB call		
			253A _H	DB not loaded		
			253C _H	FC not loaded		
			253E _H	FB not loaded		
	OB 122	I/O direct access error	2944 _H	I/O access error at nth read access (n > 1)	Not 312 IFM	
			2945 _H	I/O access error at nth write access (n > 1)		

OB 121 and 122 (Special Features in the CPUs 313 to 316-2 DP)

Please note the following special feature of the S7-300 (except in the CPU 312 IFM/318-2) with OBs 121 and 122:

Note

Please note the following special features with OBs 121 and 122:

The CPU enters in the OBs' local data value "0" in the following temporary variables of the variable declaration table:

- **Byte no. 3:** OB121_BLK_TYPE or OB122_BLK_TYPE (type of the block in which the error has occurred)
- Byte nos. 8 and 9: OB121_BLK_NUM or OB122_BLK_NUM (number of the block in which the error has occurred)
- Byte nos. 10 and 11: OB121_PRG_ADDR or OB122_PRG_ADDR (address of the block in which the error has occurred)

ww.DataSheet4U.com

Execution Times of the SFCs/SFBs and IEC Functions

С

ww.DataSheet4U.com

Introduction

The CPUs provide you with various system functions, for example, for program handling and diagnostics. You invoke these system functions in your user program with the number of the SFC or SFB.

IEC functions, which you can call from your user program, are integrated in *STEP 7*.

You can find a detailed description of all SFCs, SFBs and IEC functions in the *STEP 7 online help system*.

Contents

This Appendix shows the execution times for the SFCs/SFBs and for each IEC function. The execution times depend on the CPU used.

Appendix	Contents	Page
C.1	SFCs and SFBs	C-2
C.2	IEC Timers and IEC Counters	C-8
C.3	IEC Functions	C-8

C.1 SFCs and SFBs

SFC No.	Name	Description	Execution Time in ms																					
			312 IFM	313	314	314 IFM	315	315- 2 DP	316- 2 DP	318- 2														
0	SET_CLK	Sets the clock time	290		240			240		137														
1	READ_CLK	Reads the clock time	205		190			185		28														
2	SET_RTM	Sets the operating hours counter	_		65			60		21														
3	CTRL_RTM	Starts/stops the operating hours counter	_		55			55		21														
4	READ_RTM	Reads the operating hours counter	_		90			80		24														
5	GADR_LGC	Reads the free address of the channel <i>x</i> of the si- gnal module on module slot <i>y</i> .	-		-		-	170	_	38														
6	RD_SINFO	Reads the start informa- tion of the current OB.	180		150			120		34														
7	DP_PRAL	Triggers a process inter- rupt from the user pro- gram of the CPU as DP slave through to DP ma- ster.	_		_		_	100	_	29														
11	SYC_FR	Synchronizes outputs on the PROFIBUS-DP bus	-		-		-		-		-		-			124 +2.1								
12	D_ACT_DP	Activates or deactivates DP slaves	_	_		_		-		_		_		-		-		_		_				-
13	DPNRM_DG	Reads the DP-compliant slave diagnosis	_		-		-	180	-	97														
14	DPRD_DAT	Reads consistent data from DP standard slaves with a DP standard identi- fier > 4 bytes	_	_		_		180	_	47														
15	DPWR_DAT	Writes consistent data from DP standard slaves with a DP standard identi- fier > 4 bytes	_		-		-	180	_	47														
17	ALARM_SQ	Generates a message and sends it to display devices. The message can be acknowledged by the display device.	_	-	3	10		250		74														

* µs per request

	SFC No.	Name	Description			Ex	ecutio	on Time	e in ms		
				312 IFM	313	314	314 IFM	315	315- 2 DP	316- 2 DP	318- 2
	18	ALARM_S	Generates a message and sends it to a display device. The message is always acknowledged.	_	_	3	10		250		74
DataSheet4U.com	19 ALARM_SC Determines the acknow- ledgment state, the last ALARM_SQ received message and the state of the message-initiating si- gnal at the last call-up of the SFC 17 "ALARM_SQ" or the SFC 18 "ALARM_S".		-	- 13		30	110			56	
	20	BLKMOV	Copies variables of ran- dom type	105 +2*		90+2*			75+2*		43 + 0.17*
	21	FILL	Sets array default varia- bles	105 90+3.2* +3.2 *		75+2*		45 + 0.12*			
	22	CREAT_DB	Generates a data block of specified length in a specified area	126 +3.5 **	110+3.5**			100+3.5**			27
	23	DEL_DB	Deletes a data block	_		_			_		22
	24	TEST_DB	Tests a data block	_	134	98	110	108	126	134	30
	25	COMPRESS	Compresses a user pro- gram	-		-	I		_	1	22
	26	UPDAT_PI	Updates process image of the inputs	_		-			-		32 + 4.2***
	27	UPDAT_PO	Updates process image of the outputs	_		-			-		30 + 3.5***
	28	SET_TINT	Sets the times of a time- of-day interrupt	-		190			190		51
	29	CAN_TINT	Cancels the times of a time-of-day interrupt	-		50			50		22
	30	ACT_TINT	Activates a time-of-day interrupt	_		50			50		19
	31	QRY_TINT	Queries the status of a time-of-day interrupt	-		85			75		30
	32	SRT_DINT	Starts a delay interrupt	-		85			80		45
	33	CAN_DINT	Cancels a delay interrupt	-		50			50		29

^{*} μs per byte
 ^{**} μs per DB in stated area
 ^{***} μs per module

	SFC No.	Name	Description	Execution Time in ms								
				312 IFM	313	314	314 IFM	315	315- 2 DP	316- 2 DP	318- 2	
	34	QRY_DINT	Queries started delay in- terrupts	_		80			80		32	
	36	MSK_FLT	Masks sync faults	185		150			110		21	
	37	DMSK_FLT	Enables sync faults	205		160		ĺ	130		23	
taSheet4U.com	38	READ_ERR	Reads and erases pro- gramming and access er- rors that have occurred or have been disabled	205		160			115		23	
	39	DIS_IRT	Disables the handling of new interrupts	300		215			200		42	
	40	EN_IRT	Enables the handling of new interrupt events	490		305			280		42	
	41	DIS_AIRT	Delays the handling of in- terrupts	55		35			35		18	
	42	EN_AIRT	Enables the handling of interrupts	55		35			35		18	
	43	RE_TRIGR	Re-triggers the scan time monitor	40		30			30		98	
	44	REPL_VAL	Copies a substitute value into accumulator 1 of the level causing the error	_		45			45		20	
	46	STP	Forces the CPU into the STOP mode	_		-			-		-	
	47	WAIT	Implements waiting times	200		200			200		5	
	48	SNC_RTCB	Sychronizes slave clocks	_		_			_		17	
	49	LGC_GADR	Converts a free address to the slot and rack for a module	140		140			140		38	
	50	RD_LGADR	Reads all the declared free addresses for a mo- dule	190		190			190		77	
	51	RDSYSST	Reads out the information from the system state list SFC 51 is not interrupti- ble through interrupts.	350 +10 ***	28	30+10'	***		270+10'	***	150	
	52	WR_ USMSG	Writes specific diagnostic information in the diagno- stic buffer	140		110			110		82	
	54	RD_DPARM	Reads predefined dyna- mic parameters from a module	1300		1300			1300		116	
	55	WR_PARM	Writes dynamic parame- ters to a module	1000		1600			1600		118	

SFC No.	Name	Description	Execution Time in ms										
			312 IFM	313	314	314 IFM	315	315- 2 DP	316- 2 DP	318- 2			
56	WR_DPARM	Writes predefined dyna- mic parameters to a mo- dule	1600		1750	<u>.</u>		1750					
57	PARM_MOD	Assigns a module's para- meters	1920		2200			2200		87			
58	WR_REC	Writes a module-specific data record	1400 +32 *	1	400+3	2		1400+3	2	720+ 15*			
59	RD_REC	Reads a module-specific data record	500		500			500		810+ 15*			
60	GD_SND	Programmed transmis- sion of a GD packet	-		-			-		200+ 9.4*			
61	GD_RCV	Programmed acceptance of a GD packet	-		-			-		56			
64	TIME_TICK	Reads out the system time You can read out the sy- stem time with an accuracy in the ms range.	56	45 45				18					
65	X_SEND	Sends data to a commu- nication partner external to your own S7 station.	510		420		310			300			
66	X_RCV	Receives data from a communication partner external to your own S7 station.	190		160		120			220			
67	X_GET	Reads data from a com- munication partner exter- nal to your own S7 sta- tion. The communication partner has no associa- ted SFC.	310		250 190			250 190			130+ 8.3*		
68	X_PUT	Writes data to a commu- nication partner outside your own S7 station. The communication partner has no associated SFC.	310	250			190		130+ 8.3*				
69	X_ABORT	Aborts an existing con- nection to a communica- tion partner external to your own S7 station.	150	120 100			138						

^{*} μs per byte
 ^{***} μs per byte of a data record

	SFC No.					Ex	ecutio	on Tim	e in ms		
				312 IFM	313	314	314 IFM	315	315- 2 DP	316- 2 DP	318- 2
	72	I_GET	Reads data from a com- munication partner within your own S7 station.	300		250			190	I	140+ 9.8*
	73	I_PUT	Writes data to a commu- nication partner within your own S7 station.	300		250			190		150+ 10.6*
vw.DataSheet4U.com	74	I_ABORT	Aborts an existing con- nection to a communica- tion partner within your own S7 station.	150		120			100		138
	79	SET	Sets a bit field in the I/O area	-		-			-		56
	80	RSET	Deletes a bit field in the I/O area	-		-			-		56
	81	UBLKMOV	Consistent data transmis- sion with PUT/GET	-		-			-		42 + 0.17*

* µs per byte

Functions for the integrated inputs/outputs (only 312 IFM and 314 IFM)

The CPUs 312 IFM and 314 IFM provide the following system functions for the special channels of the onboard I/O:

The SFBs 29, 30, 38 and 39 are described in the Integrated Functions Manual.

The SFBs 41, 42 and 43 are described in the *STEP 7 System and Standard Functions* Reference Manual.

SFB- No.	Name Description		Execution	Time in ms
			312 IFM	314 IFM
29	HS_COUNT	Counts pulses at the special inputs of the inte- grated inputs/outputs	approx. 300	approx. 300
30	FREQ_MES	Measures frequency via a special input of the integrated inputs/outputs	approx. 220	approx. 220
38	HSC_A_B	Counts pulses with 2 counters A and B at the special inputs of the integrated inputs/outputs	-	approx. 230
39	POS	Controlled positioning of axes in cooperation with the user program	-	approx. 150
41	CONT_C	Continuous control	-	approx. 3300
42	CONT_S	Step control	-	approx. 2800
43	PULSEGEN	Pulse generation	-	approx. 1500

Implementation of a Sequence Processor

SFB No.	Name	Description	Execution Time in ms							
			312 IFM	313	314	314 IFM	315	315- 2 DP	316- 2 DP	318- 2
32	DRUM	Implements a sequence processor with a maxi- mum of 16 sequences.	480		360			300		33

C.2 IEC Timers and IEC Counters

	SFB No.				Execution Time in ms						
				312 IFM	313	314	314 IFM	315	315- 2 DP	316- 2 DP	318- 2
	IEC Ti	mers									
	3	TP	Generates a pulse of duration PT.	140		100			90		23
ataSheet4U.com	4	TON	Delays a leading edge of duration PT.	140		100			90		23
	5	TOF	Delays of falling edge of duration PT.	145		100			90		18
	IEC Counters										
	0	СТU	Counts up. The counter is increased by 1 for each leading edge.	120		80			70		16
	1	CTD	Counts down. The coun- ter is decreased by 1 for each leading edge.	120		80			70		16
	2	CTUD	Counts up and count down.	150		95			80		19

C.3 IEC Functions

You can use the following functions in STEP 7:

FC No.	Name	Description	Execution Time in $\mathfrak{m}s$
DATE_	AND_TIME		
3	D_TOD_DT	Concatenates the data formats DATE and TIME_OF_DAY (TOD) and convert to data format DATE_AND_TIME.	approx. 680
6	DT_DATE	Extracts the DATE data format from the DATE_AND_TIME data format.	approx. 230
7	DT_DAY	Extracts the day of the week from the data format DATE_AND_TIME.	approx. 230
8	DT_TOD	Extracts the TIME_OF_DAY data format from the DATE_AND_TIME data format.	approx. 200

FC No.	Name	Description	Execution Time in ms
Time F	ormats		
33	S5TI_TIM	Converts S5 TIME data format to TIME data format	approx. 80
40	TIM_S5TI	Converts TIME data format to S5 TIME data format	approx. 160
Durati	on		
1	AD_DT_TM	Adds a duration in the TIME format to a time in the DT format. The result is a new time in the DT format.	750
35	SB_DT_TM	Subtracts a duration in the TIME format from a time in the DT format. The result is a new time in the DT format.	750
34	SB_DT_DT	Subtracts two times in the DT format. The result is a duration in the TIME format.	700
Comp	are DATE_AND_	TIME	
9	EQ_DT	Compares the contents of two variables in the DATE_AND_TIME format for equal to.	190
12	GE_DT	Compares the contents of two variables in the DATE_AND_TIME format for greater than or equal to.	190
14	GT_DT	Compares the contents of two variables in the DATE_AND_TIME format for greater than.	190
18	LE_DT	Compares the contents of two variables in the DATE_AND_TIME format for less than or equal to.	190
23	LT_DT	Compares the contents of two variables in the DATE_AND_TIME format for less than.	190
28	NE_DT	Compares the contents of two variables in the DATE_AND_TIME format for not equal to.	190
Comp	are STRING		
10	EQ_STRNG	Compares the contents of two variables in the STRING format for equal to.	150+ (n × 32)
13	GE_STRNG	Compares the contents of two variables in the STRING format for greater than or equal to.	150+ (n × 32)
15	GT_STRNG	Compares the contents of two variables in the STRING format for greater than.	140+ (n × 38)
19	LE_STRNG	Compares the contents of two variables in the STRING format for less than or equal to.	150+ (n × 32)

L, P = block parameters (if 1 + P = 0, then the execution time L + P = 254 μ s)

n = number of characters

k = number of characters in parameter IN1

FC No.	Name	Description	Execution Time in ms
24	LT_STRNG	Compares the contents of two variables in the STRING format for less than.	140+ (n × 38)
29	NE_STRNG	Compares the contents of two variables in the STRING format for not equal to.	150+ (n × 32)
STRIN	G Variable Proce	essing	
21	LEN Reads the length of a STRING variable.		90
20	LEFT	Reads the first L characters of a STRING variable.	150+ (L × 26)
32	RIGHT	Reads the last L characters of a STRING variable.	150+ (L × 26)
26	MID	Reads the middle L characters of a STRING variable (starting at the defined character).	150+ (L × 26)
2	CONCAT	Concatenates two STRING variables in one STRING variable.	180+ (n × 28)
17	INSERT	Inserts a STRING variable into another STRING variable at a defined point.	250+ (n × 26)
4	DELETE	Deletes L characters of a STRING variable.	300+ ((L + P) × 27)
31	REPLACE	Replaces L characters of a STRING variable with a second STRING variable.	300+ ((L + P) × 27)
11	FIND	Finds the position of the second STRING variable in the first STRING variable.	k × 50
Forma	t Conversions w	vith STRING	
16	I_STRNG	Converts a variable from INTEGER format to STRING format.	1110
5	DI_STRNG	Converts a variable from INTEGER (32-bit) format to STRING format.	1500
30	R_STRNG	Converts a variable from REAL format to STRING format.	1720
38	STRNG_I	Converts a variable from STRING format to INTEGER format.	500
37	STRNG_DI	Converts a variable from STRING format to INTEGER (32-bit) format.	840
39	STRNG_R	Converts a variable from STRING format to REAL format.	200
Numb	er Processing	· · · · · · · · · · · · · · · · · · ·	
22	LIMIT	Limits a number to a defined limit value.	450
25	MAX	Selects the largest of three numeric variables.	430

L, P = block parameters (if 1 + P = 0, then the execution time L + P = 254 μ s)

n = number of characters

k = number of characters in parameter IN1

FC No.	Name	Description	Execution Time in ms
27	MIN	Selects the smallest of three numeric variables.	430
36	SEL	Selects one of two variables.	320

L, P = block parameters (if 1 + P = 0, then the execution time L + P = 254 μ s)

n = number of characters

k = number of characters in parameter IN1

www.DataSheet4U.com

www.DataSheet4U.com

D

System Status List in the CPUs

Introduction

ww.DataSheet4U.com

The CPU is able to provide you, the S7-300 user, with certain information. The CPU stores this information in the "System status list".

In this appendix you will find the sublists of the system state list made available by the CPUs.

Reading the System State List

You can use SFC 51 "RDSYSST" to read the entries in the system status list from the user program (see the *STEP 7 online help system*).

Listing the Sublists

Table C-1 below shows the individual sublists of the system status list with the entries relevant for the individual CPUs.

SZL_ID	Sublist	Index (= ID of the in- dividual re- cords of the sublist)	Record Contents (Sublist Excerpt)	Remarks
	CPU identification		CPU type and version	-
0111 _H	One record of the sublist	0001 _H	number	
	CPU features			-
0012 _H	All records of the sublist			
0112 _H	Only those records of a group	0000 _H	STEP 7 processing	
	of features	0100 _H	Time system in the CPU	
		0300 _H	STEP 7 operation set	
0F12 _H	Header information only			
0013 _H	User memory areas	_	Work memory	_

Table D-1 Sublists of the System Status List of the CPUs

	SZL_ID	Sublist	Index (= ID of the in- dividual re- cords of the sublist)	Record Contents (Sublist Excerpt)	Remarks
	0014 _H	Operating system areas	-	Process image of the inputs (number in bytes)	_
				Process image of the outputs (number in bytes)	
ot411.com				Number of memory markers	
heet4U.com				Number of timers	
				Number of counters	
				Size of the I/O address area	
				Entire local data area of the CPU (in bytes)	
		Block types			_
	0015 _H	All records of the sublist	_	OBs (number and size)	
				DBs (number and size)	
				SDBs (number and size)	
				FCs (number and size)	
				FBs (number and size)	
		State of module LEDs		-	_
	0019 _H	Status of each LED			
	0F19 _H	Header information only			
	0132 _H	Communications status information on the	0001 _H	Number and type of connections	_
		communications type	0005 _H	Diagnostics status data	
		specified	0008 _H	Time system, correction factor, operating hours counter, date/time of day	
		Interrupt status;		-	_
	0222 _H	Record for the specified interrupt	OB number		
	0232 _H	CPU Protection Level	0004 _H	CPU protection level and position of the key switch	_
	0692 _H	Status information of module rack	-	OK status of individual racks	-
		for all racks of an S7-300			

Table D-1 Sublists of the System Status List of the CPUs, continued

SZL_ID	Sublist	Index (= ID of the in- dividual re- cords of the sublist)	Record Contents (Sublist Excerpt)	Remarks
0D91 _H	Module status information		Features/parameters of the module plugged in	-
	of all modules in the specified rack (all CPUs)	0000 _H 0001 _H 0002 _H 0003 _H	Rack 0 Rack 1 Rack 2 Rack 3	
	Diagnostic buffer	_	Event information	_
00A0 _H 01A0 _H	All entered event information The x latest information entries		The information in each case depends on the event	
	Module diagnostics			
00B1 _H	Data record 0 of the module diagnostics information	Module starting address	Module-dependent diagnostics information	
00B2 _H	Complete module-dependent record of the module diagnostics information	Module rack and slot number		
00B3 _H	Complete module-dependent record of the module diagnostics information	Module starting address		

Table D-1	Sublists of the System Status List of the CPUs, continued
-----------	---

PROFIBUS-DP Sublists

Below you will find a list of the sublists that the CPU 315-2 DP can evaluate in its role as DP master or DP slave in addition to those listed in Table D-2.

	<u> </u>		
Table D-2	Sublists of the SV	/stem Status List of th	ne CPU 315-2 DP as DP Master

	SZL_ID	Sublist	Index (= ID of the in- dividual re- cords of the sublist)	Record Contents (Sublist Excerpt)	Remarks
		Module status information in the CPU			
	0A91 _H	Status information of all DP subsystems and DP masters			not 318-2
	0C91 _H	Module status information of a module	Module starting address	Features/parameters of the module plugged in	
-		Module status information			-
	0D91 _H	In the station named (for CPU 315-2 DP)	ххуу _Н	All modules of station <i>yy</i> in the DP subnet <i>xx</i>	
				As DP slave: Status data for transfer memory areas	
		Status information of module rack or stations in DP network			-
	0092 _H	Target status of racks in central configuration or of stations in a subnet	0000 _H	Information on the state of the mounting rack in the central configuration	
	0292 _H	Actual status of racks in central configuration or of stations in a subnet	Subnet ID	Information of status of stations in subnet	
	0692 _H	OK status of expansion racks in central configuration or of stations in a subnet			
-	00B4 _H	Module diagnostics			-
		All standard diagnostic data of a station (only with DP master)	Module start address (Diagnostic address)	Module-dependent diagnostic information	

Ε

Dimensioned Drawings

Introduction

ww.DataSheet4U.com

In this appendix you will find dimensioned drawings of the CPUs for the S7-300. You need the specifications in these drawings in order to dimension the S7-300 configuration. The dimensioned drawings of the other S7-300 modules and components are contained in the *Module Specifications* Reference Manual.

CPU 312 IFM

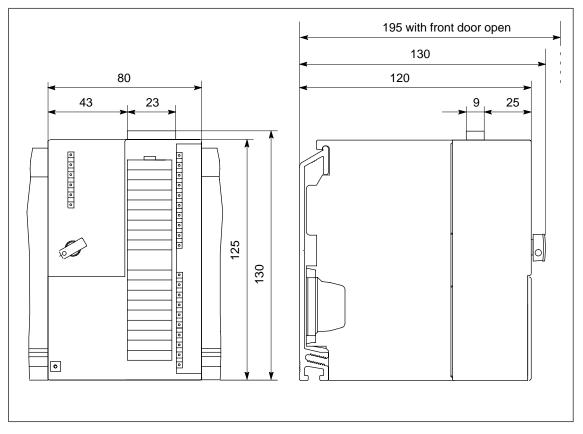


Figure E-1 shows the dimensioned drawing of the CPU 312 IFM.

Figure E-1 Dimensioned Drawing of the CPU 312 IFM

CPU 313/314/315/315-2 DP/316-2 DP

Figure E-2 shows the dimensioned drawing of the CPU 313/314/315/315-2 DP/316-2 DP. The dimensions are the same for all the CPUs listed. Their appearance can differ (see Chapter 8). For example, the CPU 315-2 DP has two LED strips.

Figure E-2 Dimensioned Drawing of the CPU 313/314/315/315-2 DP/316-2 DP

CPU 318-2

Figure E-3 shows the dimensioned drawing of the CPU 318-2, front view. The side view is illustrated in Figure E-2

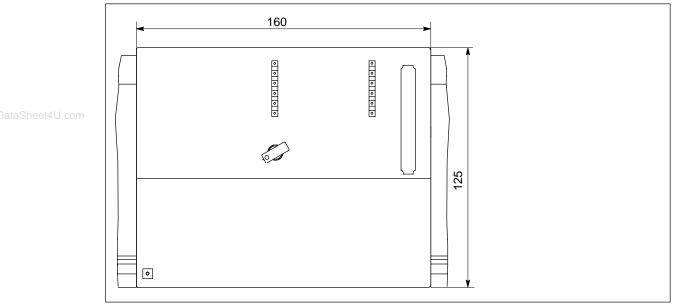


Figure E-3 Dimensioned Drawing of the CPU 318-2

CPU 314 IFM, Front View

Figure E-4 shows the dimensioned drawing of the CPU 314 IFM, front view. The side view is shown in Figure E-5.

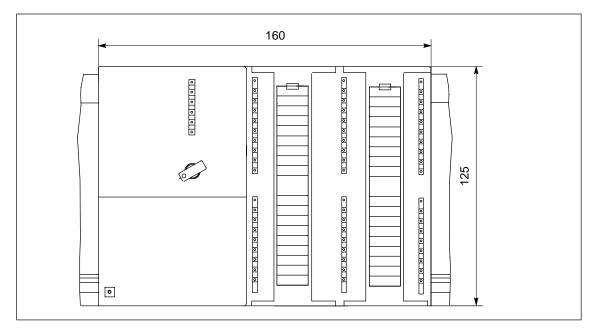


Figure E-4 Dimensioned Drawing of the CPU 314 IFM, Front View

CPU 314 IFM, Side View

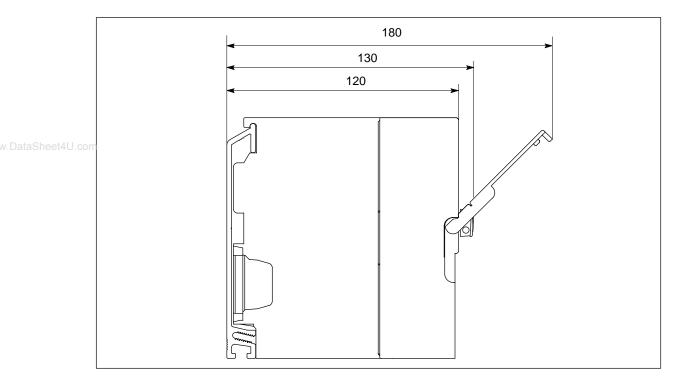


Figure E-5 shows the dimensioned drawing of the CPU 314 IFM, side view.

Figure E-5 Dimensioned Drawing of the CPU 314 IFM, Side View

Guidelines for Handling Electrostatic Sensitive Devices (ESD)

w.DataSheet4U.com Introduction

In this appendix, we explain

- what is meant by "electrostatic sensitive devices"
- the precautions you must observe when handling and working with electrostatic sensitive devices.

Contents

This chapter contains the following sections on electrostatic sensitive devices:

Section	Contents	Page
F.1	What is ESD?	F-2
F.2	Electrostatic Charging of Persons	F-3
F.3	General Protective Measures against Electrostatic Discharge Damage	F-4

F

F.1 What is ESD?

Definition

All electronic modules are equipped with large-scale integrated ICs or components. Due to their design, these electronic elements are very sensitive to overvoltages and thus to any electrostatic discharge.

These electrostatic sensitive devices have the internationally recognized shortformESD.

ww.DataSheet4U.com

Electrostatic sensitive devices are labeled with the following symbol:

Caution

Electrostatic sensitive devices are subject to voltages that are far below the voltage values that can still be perceived by human beings. These voltages are present if you touch a component or the electrical connections of a module without previously being electrostatically discharged. In most cases, the damage caused by an overvoltage is not immediately noticeable and results in total damage only after a prolonged period of operation.

F.2 Electrostatic Charging of Persons

Charging

Every person with a non-conductive connection to the electrical potential of its surroundings can be charged electrostatically.

Figure F-1 shows you the maximum values for electrostatic voltages to which a person can be exposed by coming into contact with the materials indicated in the figure. These values are in conformity with the specifications of IEC 801-2.

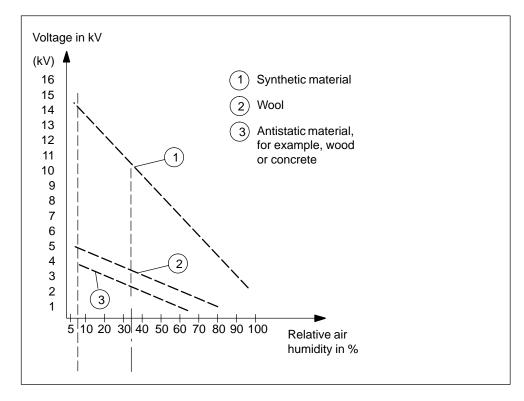


Figure F-1 Electrostatic Voltages which can Build up on a Person

ww.DataSheet4U.con

F.3 General Protective Measures against Electrostatic Discharge Damage

Ensuring Sufficient Grounding

Make sure that the personnel, working surfaces and packaging are sufficiently grounded when handling electrostatic sensitive devices. You thus avoid electrostatic charging.

Avoiding Direct Contact

You should touch electrostatic sensitive devices only if it is unavoidable (for example, during maintenance work). Hold modules without touching the pins of components or printed conductors. In this way, the discharged energy cannot affect the sensitive devices.

If you have to carry out measurements on a module, you must discharge your body before you start the measurement by touching grounded metallic parts. Use grounded measuring devices only.

Replacement Parts and Accessories for the CPUs of the S7-300

G

w.DataSheet4U.com

Replacement Parts

Table G-1 lists all the parts you can order separately or later for the CPUs of the S7-300 programmable controllers.

Table G-1 Accessories and Replacement Parts

S7-300 Parts	Order No.	Acces- sories	Re- place- ment Parts
Bus connector	6ES7 390-0AA00-0AA0	-	Х
Power connector between power supply unit and CPU	6ES7 390-7BA00-0AA0	-	Х
$2 \times \text{Key for CPU}$ (for mode selector)	6ES7 911-0AA00-0AA0	_	Х
Backup battery	6ES7 971-1AA00-0AA0	Х	_
Accumulator for real-time clock	6ES7 971-5BB00-0AA0	Х	_
Memory card		Х	
5 V - FEPROM			
• 16 KB	6ES7 951-0KD00-0AA0		
• 32 KB	6ES7 951-0KE00-0AA0		
• 64 KB	6ES7 951-0KF00-0AA0		
• 128 KB	6ES7 951-0KG00-0AA0		
• 256 KB	6ES7 951-1KH00-0AA0		
• 512 KB	6ES7 951-0KJ00-0AA0		
• 1 MB	6ES7 951-1KK00-0AA0		
• 2 MB	6ES7 951-1KL00-0AA0		
• 4 MB	6ES7 951-1KM00-0AA0		
5 V RAM			
• 128 KB	6ES7 951-0KG00-0AA0		
• 256 KB	6ES7 951-1AH00-0AA0		
• 512 KB	6ES7 951-1AJ00-0AA0		
• 1 MB	6ES7 951-1AK00-0AA0		
• 2 MB	6ES7 951-1AL00-0AA0		
Labeling strip (Qty 10)	6ES7 392-2XX00-0AA0	-	Х
Slot numbering label	6ES7 912-0AA00-0AA0	-	Х

	S7-300 Parts	Order No.	Acces- sories	Re- place- ment Parts
2	D-pin front connector		Х	-
•	Screw terminals	6ES7 392-1AJ00-0AA0		
•	Spring-loaded terminals	6ES7 392-1BJ00-0AA0		
4	0-pin front connector		Х	_
•	Screw terminals	6ES7 392-1AM00-0AA0		
m 🖕	Spring-loaded terminals	6ES7 392-1BM01-0AA0		
S	hield contact element	6ES7 390-5AA00-0AA0	Х	-
S	hield terminals for		Х	-
•	2 cables with a shield diameter of 2 to 6 mm (0.08 to 0.23 in.) each	6ES7 390-5AB00-0AA0		
•	1 cable with a shield diameter of 3 to 8 mm (0.12 to 0.31 in.)	6ES7 390-5BA00-0AA0		
•	1 cable with a shield diameter of 4 to 13 mm (0.16 to 0.51 in.)	6ES7 390-5CA00-0AA0		
Ir	struction List	6ES7 398-8AA03-8AN0	Х	-

Table G-1	Accessories and Replacement Parts, continued
-----------	--

Η

SIMATIC S7 Reference Literature

Introduction

ww.DataSheet4U.com

This Appendix contains references

- to manuals that you require for configuring and programming the S7-300,
- to manuals describing the components of a PROFIBUS-DP network,
- to technical books providing information beyond the S7-300,

Manuals on Configuration and Commissioning

Comprehensive user documentation is available to assist you in configuring and programming the S7-300. You can select and use this documentation as required. Table H-1 gives you an overview of the documentation for *STEP 7*.

Table H-1	Manuals for	Configuring and	Programming	the S7-300
-----------	-------------	-----------------	-------------	------------

Title	Contents
System Software for S7-300/400 Program Design Programming Manual	The programming manual offers basic information on the design of the operating system and a user program of an S7-300. For novice users of an S7-300/400 it provides an overview of the programming principles on which the design of user programs is based.
Standard Software for S7 und M7 STEP 7 User Manual	The STEP 7 User Manual describes the principle and functions of the STEP 7 software for programmable logic controllers. The manual provides both novice and experienced users of STEP 5 with an overview of the procedures used to configure, program and start up an S7-300/400. STEP 7 includes an online help system for detailed answers to questions regarding the use of the software.
Statement List (STL) for S7-300/400 Programming Manual Ladder Logic (LAD) for S7-300 and S7-400 Programming Manual	The manuals for the STL, LAD and SCL packages each comprise the user manual and the language description. For programming an S7-300/400 you need only one of the languages, but, if required, you can switch between the language to be used in a project. If it is the first time that you use one of the languages, the manuals will help you in getting familiar with the programming principles. When working with the software, you can use the on-line help,
Structured Control Language (SCL) ¹ for S7-300 and S7-400 Programming Manual	which provides you with detailed information on editors and compilers.

Title	Contents			
GRAPH ¹ for S7-300 and S7-400 Sequential Function Charts	With the GRAPH, HiGraph, CFC languages, you can implement sequential function charts, state diagrams or graphic interconnections of blocks. Each of the manuals comprises a user			
Manual	- manual and a language description. If it is the first time that you			
HiGraph1 for S7-300 and S7-400 Programming State Diagrams	use one of these languages, the manual will help you in getting familiar with the programming principles. When working with the			
Manual	software, you can also use the on-line help (not for HiGraph),			
Continuous Function Charts (CFC) ¹ for S7 and M7 Programming Continuous Function Charts Manual	which provides you with detailed information on editors and compilers.			
System Software for S7-300 and S7-400 System and Standard Functions Reference Manual	The S7-CPU's offer systems and standard functions which are integrated in the operating system. You can use these functions when writing programs in one of the languages, that is STL, LAD and SCL. The manual provides an overview of the functions available with S7 and, for reference purposes, detailed interface descriptions which you require in your user program.			

Table H-1	Manuals for	Configuring and	Programming	the S7-300, continued
-----------	-------------	-----------------	-------------	-----------------------

1 Optional system software packages for S7-300/400

Communication Manual

The *Communication with SIMATIC* manual gives you an introduction to and overview of the communication possible in SIMATIC.

Manuals for PROFIBUS-DP

For the configuration and startup of a PROFIBUS-DP network, you will need the descriptions of the other nodes and network components integrated in the network. To help you with this, you can order the manuals listed in Table H-2.

Table H-2	Manuals for PROFIBUS-DP

-

ww.DataSheet4U.com

Technical Literature

Table H-3 lists a selection of technical literature which you can obtain directly from Siemens or from book retailers.

Table H-3 List of Books You Can Order

Title	Siemens Order Number	Book Retailers' Order Number
Speicherprogrammierbare Steuerungen, Grundbegriffe	A19100-L531-F913	ISBN 3-8009-8031-2
Siemens-AG, Berlin and Munich, 1989		
SPS Speicherprogrammierbare Steuerungen vom Relaisersatz bis zum CIM-Verbund Eberhardt E. Grötsch	A19100-L531-G231	ISBN 3-486-21114-5
Oldenbourg Verlag; Munich, Vienna 1989		
Speicherprogrammierbare Steuerungen SPS; Band 1: Verknüpfungs- und Ablaufsteuerungen; von der Steuerungsaufgabe zum Steuerungsprogramm	_	ISBN 3-528-24464-X
Günter Wellenreuther, Dieter Zastrow		
Braunschweig (3rd edition) 1988		
Steuern und Regeln mit SPS	_	ISBN 3-7723-5623-0
Andratschke, Wolfgang		
Franzis-Verlag		
Dezentralisieren mit PROFIBUS DP	A19100-L531-B714	ISBN 3-89578-074-X
Aufbau, Projektierung und Einsatz des PROFIBUS DP mit SIMATIC S7		
Josef Weigmann, Gerhard Kilian		
Publicis MCD Verlag, 1998		

Safety of Electronic Control Equipment

Introduction

ww.DataSheet4U.com

The information provided here is of a predominantly fundamental nature and applies regardless of the type of electronic control system and its manufacturer.

Reliability

Maximum reliability of the SIMATIC systems and components is achieved by implementing the following extensive and cost-effective measures during the development and manufacture:

This includes the following:

- Use of high-quality components;
- · Worst-case design of all circuits;
- Systematic and computer-controlled testing of all components supplied by subcontractors;
- Burn-in of all LSI circuits (e.g. processors, memories, etc.);
- Measures to prevent static charge building up when handling MOS ICs;
- · Visual checks at different stages of manufacture;
- Continuous heat-run test at elevated ambient temperature over a period of several days;
- · Careful computer-controlled final testing;
- Statistical evaluation of all faulty systems and components to enable the immediate initiation of suitable corrective measures;
- Monitoring of the most important control components using on-line tests (watchdog for the CPU, etc.).

These measures are basic measures. They prevent or rectify a large proportion of possible faults.

Risks

In all cases where the occurrence of failures can result in material damage or injury to persons, special measures must be taken to enhance the safety of the installation – and therefore also of the situation. For this type of application, relevant, plant-specific regulations exist that must be observed on installing the control systems (e.g. VDE 0116 for burner control systems).

For electronic control equipment with a safety function, the measures that have to be taken to prevent or rectify faults are based on the risks involved in the installation. Above a certain potential danger, the basic measures listed above are no longer sufficient. In such cases, additional measures (e.g. redundant configurations, tests, etc.) must be implemented for the control equipment and certified (DIN VDE 0801). The S5-95F fail-safe programmable controller has been prototype tested by the German Technical Inspectorate, BIA and GEM III and several certificates have been granted. It is, therefore, just as able as the S5-115F fail-safe PLC that has already been tested to control and monitor safety-related areas of the installation.

Subdivision into Safety-Related and Non-Safety-Related Areas

In almost every installation there are sections that perform safety-related tasks (e.g. Emergency Stop pushbuttons, protective guards, two-hand-operated switches). To avoid the need to examine the entire controller from the aspect of safety, the controller is usually divided into a **safety-related** and **non-safety-related area**. In the non-safety-related area, no special demands are placed on the safety of the control equipment because any failure in the electronics will have no effect on the safety of the installation. In the safety-related area, however, the only control systems and switchgear that are permitted to be used are those that comply with the relevant regulations.

The following divisions are common in practical situations:

1. For control equipment with few safety-related functions (e.g. machine controls)

The conventional PLC is responsible for machine control and the safety-related functions are implemented with the fail-safe S5-95F mini PLC.

2. For control equipment with a medium degree of safety-related functionality (e.g. chemical installations, cable cars)

The non-safety-related area is also implemented here with a conventional PLC and the safety-related area is implemented with a tested fail-safe PLC (S5-115F or several S5-95Fs).

The entire installation is implemented with a fail-safe control system.

3. For control equipment with mainly safety-related functions (e.g. burner control systems)

The entire control system is implemented with fail-safe technology.

ww.DataSheet4U.com

Important Information

Even when electronic control equipment has been configured for maximum design safety, for example using multi-channel setups, it is still of the utmost importance that the instructions given in the operating manual are followed exactly. Incorrect handling can render measures intended to prevent dangerous faults ineffective, or generate additional sources of danger.

www.DataSheet4U.com

www.DataSheet4U.com

J

Siemens Worldwide

In This Appendix

www.DataSheet4U.com

In this appendix you will find a list of the following:

- Siemens offices in the Federal Republic of Germany
- All European and non-European offices and representatives of Siemens AG.

SIMATIC Partners in the Federal Republic of Germany

ZN 01189 Dresden AUT 1, Mr Lehmann Karlsruher Str. 111

ZN 40219 Düsseldorf AUT P 15, Mr Becker Lahnweg 10

ZN 99097 Erfurt AUT P 22, Mr Skudelny Haarbergstr. 47

ZN 45128 Essen AUT P 14, Mr Klein

Kruppstr. 16

(02 11) 3 99-16 64
 Fax (02 11) 3 99-18 48

(03 61) 4 25-23 51
 Fax (03 61) 4 25-23 50

(02 01) 8 16-24 28
 Fax (02 01) 8 16-23 31

ZN 60329 Frankfurt AUT P 25, Mr W. Müller Rödelheimer Landstr. 1-3

ZN 79104 Freiburg AUT P, Mr Thoma Habsburgerstr. 132

20099 Hamburg

Lindenplatz 2

AUT 1. Mr Rohde

ZN

ΖN

(0 69) 7 97-34 18
Fax (0 69) 7 97-34 42

(07 61) 27 12-2 38
 Fax (07 61) 27 12-4 46

(0 40) 28 89-30 03
 Fax (0 40) 28 89-32 09

Hildesheimer Str. 7

(05 11) 8 77-23 19
Fax (05 11) 8 77-27 39

- N Branch
- N 52066 Aachen AUT P 13, Mr Georgens Kurbrunnenstr. 22
- (02 41) 4 51-2 52
 Fax (02 41) 4 51-3 98
- N 86159 Augsburg AUT S11, Mr Hirth Werner-von-Siemens Str. 6 (08 21) 25 95-4 50
 Fax (08 21) 25 95-4 08
- - N 95448 Bayreuth AUT P/S 11, Ms Hösl Weiherstr. 25 (09 21) 2 81-3 41 (09 21) 2 81-4 44 **a**
 - Fax N 10587 Berlin AUT P 1, Mr Liebner Salzufer 6-8
 - (0 30) 39 93-23 97
 Fax (0 30) 39 93-23 02
 - N 33605 Bielefeld AUT P 12, Ms Schlüpmann Schweriner Str. 1
 - (05 21) 2 91-5 21
 Fax (05 21) 2 91-5 90
 - N 38126 Braunschweig AUT P 11, Mr Pelka Ackerstr. 20 (05 31) 27 12-3 05
 - Fax (05 31) 27 12-4 16
 - N 28195 Bremen AUT P 12, Ms Ulbrich Contrescarpe 72 (04 21) 3 64-24 27
 Fax (04 21) 3 64-28 42
 - 09114 Chemnitz AUT P 11, Ms Aurich Bornaer Str. 205 Ν
 - (03 71) 4 75-35 10
 Fax (03 71) 4 75-35 25

- ZN 74076 Heilbronn AUT P/S, Mr Gaul Neckarsulmer Str. 59 (03 51) 40 22-2 77
 Fax (03 51) 40 22-2 74 (0 71 31) 1 83-2 03
 Fax (0 71 31) 1 83-3 20
 - ZN 76185 Karlsruhe AUT 14 P, Mr Boltz Bannwaldallee 48 (07 21) 9 92-24 13
 Fax (07 21) 9 92-25 85
 - 34117 Kassel AUT P 13, Mr Uhlig ΖN Bürgermeister-Brunner-Str.15
 - (05 61) 78 86-3 32
 Fax (05 61) 78 86-4 48
 - 87439 Kempten AUT P, Mr Fink Lindauer Str. 112 ΖN (08 31) 58 18-2 25
 Fax (08 31) 58 18-2 40
 - ZN 24109 Kiel AUT 1. Ms Drews Wittland 2-4
 - (04 31) 58 60-3 26
 Fax (04 31) 58 60-2 48 ZN 56068 Koblenz AUT P 11, Mr Ricke
 - Frankenstr. 21 (02 61) 1 32-2 44
 Fax (02 61) 1 32-2 55
 - ZN 50823 Köln AUT P 14, Mr Prescher Franz-Geuer-Str. 10 (02 21) 5 76-27 62
 Fax (02 21) 5 76-27 95
- ZN 78416 Konstanz AUT P, Ms Wiest Fritz-Arnold-Str. 16 30519 Laatzen (Hannover) AUT P 10, Ms Hoffmann
 - (075 31) 988-2 02
 Fax (075 31) 988-1 40

- ZN 04105 Leipzig AUT P 2, Ms Kiesewetter Springerstr. 15 (03 41) 2 10-30 07
 Fax (03 41) 2 10-30 63
- ZN 39106 Magdeburg AUT VG 33, Mr Ganschinietz Sieverstorstr. 32-33
- (03 91) 5 88-17 21
 Fax (03 91) 5 88-17 22 ZN 68165 Mannheim AUT 16 P, Mr Sulzbacher
- Dynamostr. 4 (06 21) 4 56-28 43
 Fax (06 21) 4 56-25 45
- ZN 81679 München AUT P 14, Mr Schäfer Richard-Strauss-Str. 76 (0 89) 92 21-30 64
 Fax (0 89) 92 21-43 99
- ZN 48153 Münster AUT S 13, Mr Schlieckmann Siemensstr. 55
- (02 51) 76 05-4 25
 Fax (02 51) 76 05-3 36 ZN 90439 Nürnberg AUT P 11, Mr Glas Von-der-Tann-Str. 30
- (09 11) 6 54-35 87
 Fax (09 11) 6 54-73 84
- ZN 49090 Osnabrück AUT S 13. Mr Pöhler Eversburger Str. 32 (05 41) 12 13-2 73
 Fax (05 41) 12 13-3 50
- ZN 93053 Regensburg AUT P/S 12, Mr Rewitzer Hornstr. 10
 - (09 41) 40 07-1 97
 Fax
 (09 41) 40 07-2 36

- ZN 18069 Rostock AUT, Ms Langhammer Industriestr. 15 (03 81) 78-21 71
 Fax (03 81) 78-21 75
- 66111 Saarbrücken 7N
- AUT, Mr Müller Martin-Luther-Str. 25
 - (06 81) 3 86-22 89
 Fax (06 81) 3 86-21 11
- 57072 Siegen AUT P 11, Mr Patz Sandstr. 42-48 7N
 - (02 71) 23 02-2 40
 Fax (02 71) 23 02-2 38
- 70499 Stuttgart AUT P 11, Mr Müller Weissacherstr. 11 ZN (07 11) 1 37-26 44
 Fax (07 11) 1 37-29 46
- 54292 Trier AUT VG 14 P, Mr Baldauf Löbstr. 15 ΖN (06 51) 20 09-23
 Fax (06 51) 20 09-24
- ZN 89079 Ulm AUT ZR, Mr Birk Nikolaus-Otto-Str. 4
 - (07 31) 94 50-3 28
 Fax (07 31) 94 50-3 34
- ZN 97084 Würzburg AUT PIS 13, Mr Vogt Andreas-Grieser-Str. 30 (09 31) 61 01-4 59
 Fax (09 31) 61 01-5 42
- ZN 42103 Wuppertal siehe ZN 45128 Essen AUT P 14, Mr Klein Kruppstr. 16
 - (02 01) 8 16-24 28
 Fax (02 01) 8 16-23 31

SIMATIC Partners in Europe (excluding the Federal Republic of Germany)

Belgium

1060 Bruessel Siemens S.A., VP4, Mr Gmuer Chausse de Chaleroi 116 00 32 (2) 5 36 25 33 Fax 00 32 (2) 5 36 23 87

Bulgaria

Denmark

2750 Ballerup Siemens A/S, IP, Mr Hansen Borupvang 3 © 00 45 (44) 77 42 90 Fax 00 45 (44) 77 40 16

Finland

France

69641 Caluire-et-Cuire/Lyon Siemens S.A., AUT 1, Leitstelle 9-11, Chemin des Petites Brosses, BP 39 ■ 00 33/78 98 60 08
Fax 00 33/78 98 60 18

59812 Lesquin, Cedex/Lille Siemens S.A., AUT 1, Leitstelle 78, Rue de Gustave Delroy BP 239

00 33/ 20 95 71 91
 Fax 00 33/ 20 95 71 86

44300 Nantes Siemens S.A., AUT 1, Leitstelle, Zac du Perray 9, Rue du Petit Chatelier € 00 33/40 18 68 30 Fax 00 33/40 93 04 83

93527 Saint Denis, Cedex 2/Paris Siemens S.A., AUT 1, Mr Granger 39/47, Bd Ornano 60 00 33 (1) 49 22 33 18 Fax 00 33 (1) 49 22 32 05

31106 Toulouse Siemens S.A., AUT 1, Mr Huguet ZAC de Basso Cambo Avenue du Mirail, BP 1304 © 00 33/ 62 11 20 15 Fax 00 33/ 61 43 02 20

Greece

15110Amaroussio/Athen Siemens A.E., HB 3 AUT, Mr Antoniou; Paradissou & Artemidos, P.O.B. 6 10 11 6 00 30 (1) 68 64-5 15 Fax 00 30 (1) 68 64-5 56

54110Thessaloniki Siemens A.E., VB 3 AUT, Mr Passalidis Georgikis Scholis 89, P.O.B. 10290 © 00 30 (31) 47 92 12 Fax 00 30 (31) 47 92 65

Great Britain

Manchester M20 2UR Siemens PLC, Control Systems, Mr Hardern Sir William Siemens House, Princess Road $\stackrel{\circ}{=}$ 00 44 (61) 4 46 52 32 Fax 00 44 (61) 4 46 52 32

EWA 4NEB 710 6084-02

Ireland Austria Dublin 11 Siemens Ltd., Power & Automa-tion Division, Mr Mulligan 8-11 Slaney Road Dublin Industrial Estate © 0.03 53 (1) 8.30 28 55 Fax 0.03 53 (1) 8.30 31 51

Iceland

121 Reykjavik Smith & Norland H/F, Mr Kjartansson, Noatuni 4, P.O.B. 519 ■ 003 54 (1) 62 83 00 Fax 0 03 54 (1) 62 83 40 Italy 40127 Bologna Siemens S.p.A., AUT R10A, Mr Tosatti Via Casciarolo, 8 € 00 39 (51) 6 38 45 09 Fax 00 39 (51) 24 32 13

25128 Brescia Siemens S.p.A., AUT R10A, Mr Gaspari, Via della Volta, 92 © 00 39 (30) 353 05 26 Fax 00 39 (30) 34 66 20

20124 Milano Siemens S.p.A., AUT R10A, Mr Berti, Via Lazzaroni, 3 ☎ 00 39 (2) 66 76 28 36 Fax 00 39 (2) 66 76 28 20

00142 Roma Siemens S.p.A., AUT R10A, Mr Vessio, Via Laurentina, 455 6 00 39 (6) 5 00 95-1 Fax 00 39 (6) 5 00 95 20

10127 Torino Siemens S.p.A., AUT R10A, Mr Montoli, Via Pio VII, 127 00 39 (11) 6 17 3-1 Fax 00 39 (11) 61 61 35 Croatia

Luxembourg

 1017Luxemburg-Hamm

 Siemens S.A., AUT, Mr Nockels

 20, Rue des Peupliers

 B.P. 1701

 ● 0.03 52/ 4 38 43-4 21

 Fax 0.03 52/ 4 38 43-4 15

Norway

5033 Fylingsdalen Siemens A/S Bergen, Mr Troan, Bratsbergveien 5 Postboks 36 60 € 00 47 (55) 17 67 41 Fax 00 47 (55) 16 44 70

S7-300 Programmable Controller Hardware and Installation

6901 Bregenz Siemens AG, AUT, Mr Madlener Josef-Huter-Straße 6, Postfach 347 00 43 (55 74) 41 92 72
 Fax 00 43 (55 74) 41 92 88

8054 Graz Siemens AG, AUT, Mr Jammernegg Strassganger Straße 315 Postfach 39 O0 43 (3 16) 2 80 42 80 Fax 00 43 (3 16) 2 80 42 85

6040 Innsbruck/Neu-Rum Siemens AG, AUT, Mr Mayr Siemensstraße 24, Postf. 9 04 00 43 (5 12) 23 12 60 Fax 00 43 (5 12) 23 15 30

9020 Klagenfurt Siemens AG, AUT, Mr Weber Werner von Siemens Park 1 00 43

(4 63) 3 88 32 43 Fax 00 43 (4 63) 3 88 34 49

4020 Linz Siemens AG, AUT, Mr Schmidt Wolfgang-Pauli-Straße 2 Postfach 563 00

(7 32) 3 33 02 95 Fax 00 43 (7 32) 3 33 04 93

62) 4 48 83 35 Fax 00 43 (6 62) 4 48 83 09 1211 Wien Siemens AG, AUT 1, Mr Strasser, Siemensstraße 88-92, Postfach 83

00 43 (1) 25 01 37 88 Eax 00 43 (1) 25 01 39 40 Poland

A0-931 Katowice Siemens Sp. z.o.o., Niederlassung Katowice, Mr Krzak UI. Kosciuszki 30 = 00 48 (3) 157 32 66 Fax 00 48 (3) 157 30 75

 41000 Zagreb
 60-815 Poznan

 Siemens d.o.o., Mr Culjak
 Siemens So. z.o., Niederlassung

 Trg Drazena Petrovica 3 ("Cibona")
 Poznan, Mr Weiss

 0 03 85 (41) 33 88 95
 UI. Gajowa 6

 Fax 0 03 85 (41) 32 66 95
 04 8 (61) 47 08 86

 Fax 0 04 8 (61) 47 08 89
 Fax 00 48 (61) 47 08 89

 $\begin{array}{l} 4450\,Matosinhos-Porto\\ Siemens S.A., Dep, Energia e\\ Industria, Mr.Eng. A. Amaral,\\ Estrada Nacional 107,\\ No. 3570 Freixieiro, Apartado 5145\\ \hlineef{eq} 003 51 (2) 9 99 21 11\\ Fax 0 03 51 (2) 9 99 20 01 \end{array}$

Rumania

76640 Bucuresti Russia

113043Moskau Siemens AG, Mr Engelhard/ Mr Michailow, UI, Dubininskaja 98 ● 0.07 (0.95) 2.36 75 00 Fax 0.07 (0.95) 2.36 62 00

Sweden

40020 Göteborg Siemens AB, ASP, Mr Ohlsson Ostergardsgatan 2-4 Box 1 41 53 = 00 46 (31) 7 76 86 53 Fax 00 46 (31) 7 76 86 76

85122 Sundsvall nidt Siemens AB, ASP, Mr Sjöberg Lagergatan 14, Box 766 © 004 46 (60) 18 56 00 00 43 Fax 00 46 (60) 61 93 44

 Fax 00 43 (7 32) 3 33 04 93
 19487 Upplands Väsby/Stockholm

 5020 Salzburg
 19487 Upplands Väsby/Stockholm

 Siemens AG, AUT, Mr Mariacher Junnsbrucker Bundesstraße 35
 00 46 (8) 7 28 14 64

 Postfach 3
 00 46 (8) 7 28 18 00

00 43 (6 Switzerland

1020Renens/Lausanne Siemens-Albis SA, Systemes d'automation, VHRL, MS Thevenaz 5, Av. des Baumettes Case postale 153 = 00 41 (21) 6 31 84 48

Slovakian Republic

81261 Bratislava Siemens AG, Mr Sykorcin, Tovarenska 11 00 42 (7) 31 21 74
 Fax 00 42 (7) 31 63 32

Slovenia

61000Ljubljana Siemens Slovenija, Mr Lavric Dunajska C47 0 03 86 (61) 1 32 60 68
 Fax 0 03 86 (61) 1 32 42 81

Spain

A8011 Bilbao Siemens S.A., AUT 1, Mr Tapia Maximo Aguirre, 18 € 00 34 (4) 4 27 64 33 Fax 00 34 (4) 4 27 82 39

 2700 Amadora
 08940 Cornella de Llobregat/

 Siemens S.A., Dep, Energia e Industria, Mr Eng. C. Pelicano
 08940 Cornella de Llobregat/

 Estrada Nacional 117 ao
 Siemens S.A., AUT 1, Mr Ortiz

 Estrada Nacional 117 ao
 Joan Fernandez Vallhorrat, 1

 © 0 03 51 (1) 4 17 85 03
 € 00 34 (3) 4 74 42 24

 Fax 0 03 51 (1) 4 17 80 71
 Fax 00 34 (3) 4 74 42 34

33206 Gijon Siemens S.A., AUT 1, Mr Huchet Corrida, 1 ← 00 34 (85) 35 08 00 Fax 00 34 (85) 34 93 10

15005 La Coruna Siemens S.A., AUT 1, Mr Pereira Linares Rivas, 12-14 6 00 34 (81) 12 07 51 Fax 00 34 (81) 12 03 60

30008 Murcia Siemens S.A., AUT 1, Mr Martinez Marques de los Velez, 13 6 00 34 (68) 23 36 62 Fax 00 34 (68) 23 52 36

41092 Sevilla Siemens S.A., AUT 1, Mr de la Fuente ISLA DE LA CARTUJA Paseo de la Acacias, s/n (Edificio Siemens) ● 00 34 (5) 4 46 30 00 Fax 00 34 (5) 4 46 30 46

46021 Valencia Siemens S.A., AUT 1, Mr Albors Avda. Aragon, 30 (Ed. Europa) ☎ 00 34 (6) 3 69 94 00 Fax 00 34 (6) 3 62 61 19

36204 Vigo Siemens S.A., AUT 1, Mr Garrido Pizarro, 29 ☎ 00 34 (86) 41 60 33 Fax 00 34 (86) 41 84 64

50012Zaragoza Siemens S.A., AUT 1, Mr Aliaga Avda. Alcalde Gomez Laguna, 9 a 00 34 (76) 35 61 50 Fax 00 34 (76) 56 68 86

Czech Republic

60200 Brno Siemens AG, Kancelar Brno, Mr Tucek, Vinarská 6 a 00 42 (5) 43 21 17 49 Fax 00 42 (5) 43 21 19 86

14000 Praha 4 Siemens AG, Zastoupeni v CR, Mr Skop, Na strzi 40 € 00 42 (2) 61 21 50 33 6 Fax 00 42 (2) 61 21 51 46

Turkey

06680Ankara-Kavaklidere SIMKO-ANKARA, Mr Ensert, Atatürk Bulvari No. 169/6 00 90 (312) 4 18 22 05

80040Findikli-Istanbul SIMKO TIC. ve SAN. A. S., AUT 1, Ms Yargic Meclisi Mebusan Cad. No 125 a 00 90 (212) 2 51 17 06 Fax 00 90 (212) 2 52 39 16

Ukraine

252054 Kiew 54

Hungary

1036 Budapest Siemens GmbH, AUT 1, Mr Turi Lajos utca 103 6 00 36 (1) 2 69 74 55 Fax 00 36 (1) 2 69 74 54

www.DataSheet4U.com

SIMATIC Partners Outside of Europe

America

Argentina

8000 Bahia Blanca, Prov. de Buenos Aires Siemens S.A., Mr S.Duran, Rudriguez 159 ☎ +54 (91) 55-61 41 Fax +54 (91) 55-61 71

(1650) San Martin, Prov. de Buenos Aires Siemens S.A., PEI-AUT, Mr Rudriguez Juis/Mr Roland Herron, Gral, Roca 1865, Ruta 8, km 18 C.C. ■ +54 (1) 7 38 71 92/715 = +54 (1) 7 38 71 95 Fax 254 (1) 7 38 71 71

5539 Las Heras, Prov. de Mendoza Siemens S.A., Mr S. Suarez, Acceso Norte 379 = +54 (61) 30-00 22/0 37 Fax +54 (61) 30-00 22/0 37

2000 Rosario, Prov. de Santa Fe Siemens S.A., Mr R. Stiza, Ricchieri 750 = +54 (1) 41 37-03 21/0 Fax +54 (1) 41 37-07 87

La Paz Sociedad Comercial e Industrial Hansa Ltda., E & A, Mr Beckmann Calle Mercado esq. Yanacocha C. P. 10 800 F. +591 (2) 35 44 45 Fax +591 (2) 37 03 97

San Jose 1000 Siemens S.A. San Jose, Division Energia y Automatizacion, VAT, Mr Ferraro, La Uruca, Apartado 100 22 $\stackrel{\odot}{=}$ +5 06 87 50 50 Fax +5 06 21 50 50

Quito Siemens S.A., Dept. DEA, Mr J. Guerra Calle Manuel Zambrano y Panamericana Norte km 2 1/2 Casilla de Correos 17-01-3580 + 5 93 (2) 47 40 60 Fax +5 93 (2) 40 77 38

Bolivia

La Paz

Brazil

Chile

Costa Rica

Ecuador

Afrika

Ägypten

Algeria

16035 Hydra/Alger Siemens, Bureau d'Alger, Division Energie, Mr Bennour, 44, rue Abri Areski, B.P. 112 + 213 (2) 60 60 98 Fax + 213 (2) 60 65 98

Ivory Coast

Abidjan 15/R. C. I. Siemens AG, SEMEN, Mr. Hellal, 16 B.P. 1062 = +2 25 (37) 46 57 Fax +2 25 (27) 10 21

Libya

Tripoli/Libya S.P.L.A.J. Siemens AG, Branch Libya, Mr Wanab, Zat-EL-Imad-Building Tower No. 5, Floor No. 9 P.O.B. 91 531 = +218 (21) 4 15 34 Fax +218 (21) 4 79 40

Morocco

Casablanca 05 SETEL S.A., AUT, Mr El Bachiri, Immeuble Siemens, km 1, Route de Rabat, Ain Sebaa ● +212 (2) 35 10 25 Fax +212 (2) 34 01 51

Namibia

South Africa

Tunisia

TN-2062 Romana-Le Bardo

 $\begin{array}{l} \text{TN-2035 Charguia II Tunis} \\ \text{SITELEC S.A. Mr Mouelhi} \\ 16, Rue de l'Usine \\ \text{Zone industrielle (Aéroport),} \\ \text{BP 115, 1050 Tunis Cedex} \\ \hline e + 216 (1) 70 00 99 \\ \text{Fax} + 216 (1) 71 00 \end{array}$

Zimbabwe

Electro Technologies Corp. (Pvt.) Ltd./ Siemens Zimbabwe, Mr Ron Claassens, Savoy House orn. Inez Terrace/J. Moyo Ave P.O. Box 46 80 $\stackrel{6}{=}$ +263 (4) 79 18 66 Fax +263 (4) 75 44 06

Guatemala

EL Salvador

Ciudad de Guatemala Siemens S.A., EA/AUT, Mr Godoy 2a Calle 6-76 Zona 10, Apartado 1959 € +502 (2) 32 44 44 Fax +502 (2) 34 36 70

San Salvador Siemens S.A., E/A, Mr M. Dubon 43, Calle Siemens Parque Industrial Sta. Elena Apartado 1525 $\stackrel{6}{=}$ +5 03 78 33 33 Fax +5 03 78 33 34

Canada

Mississauga, ON L5N 7AG Siemens Electric Ltd., Dept, SL 20, Mr Fred Leon, 2185 Derry Road West = +1 (905) 7 92 81 95 82 Fax +1 (905) 58 19 58 12

Point Claire, QUE H9R-4R6 Siemens Electric Ltd., Mr D. Goulet 7300 Trans Canada Highway = +1 (514) 4 26 60 99 Fax +1 (514) 4 26 61 44

Columbia

Baranquilla Siemens S.A., EA, Mr C. Perez, Carrera 58 No. 709-40 € +57 (958) 56 11 48 Fax +57 (958) 56 11 48

Bogota 6 Siemens S.A., Division Energia, Mr M. Jaramillo Carrera 65, No. 11-83 Apartado 80150 $\stackrel{6}{=}$ +57 (1) 2 94 22 66 Fax +57 (1) 2 94 24 98

Cali Siemens S.A., Barranquilla, Mr Guido Hernandez Carrera 40, No. 13-05 ≆ +57 (92) 66-4 44 00 Fax +57 (92) 66-5 30 56

Cali Siemens S.A. Cali Mr C. A. Naranjo Carrera 48 A, 15 Sur 92 € +57 (94) 2 66-30 66 Fax +57 (94) 2 68-25 57

Mexico

22300 Mexico, D.F. Siemens S.A. de C.V., EI-AUT, Mr Gregorio Sanchez DelegacionAzcapotzalco Poniente 116, No. 590 Colonia Industrial Vallejo Apartado Postal 15-064, 02600 mexico € +52 (5) 3 28 20 00 Fax +52 (5) 3 28 21 92 Fax +52 (5) 3 28 21 93

Peru

Lima 13 ESIM S.A., Dept. AUT, Mr Paz-Soldan Avda, N. Arriola 385 4to Piso a +51 (14) 71 46 61 Fax +51 (14) 71 09 93

USA

Alpharetta, GA 30202 SIA Inc., Regional Sales Manager Sautheast, Mr Mich Gunyon, TechnologyDrive ← +1 (4 04) 7 40 36 60 Fax +1 (4 04) 7 40 36 96

Houston, TX 77040 SIA Inc., SouthWest Region, Mr Wade Bradford 13100 Northwest Freeway, Suite 210 + 1 (713) 6 90 03 33 Fax +1 (713) 4 60 44 50

Mason, OH 45040-9011 SIA Inc., Central Region, Mr Luther Crouthamel, 4770 Duke Drive suite 381 € +1 (5 13) 3 98 96 91 Fax +1 (5 13) 3 98 98 39

Plymouth, MN 55442 SIA Inc., MidWest Region, Mr Greg Jaster, 1323545th Avenue No. +1 (7 08) 6 40 15 95 Fax +1 (7 08) 6 40 80 26

Venezuela

1071 Caracas Siemens S.A., AUT-ASI, Mr Jesus Cavada Avda. Don Diego Cisneros Urbanizacion Los Ruices, Ap. 3616, Caracas 1010 A + 58 (2) 2 39 07 33 Fax +58 (2) 2 03 82 00

Asia China

510064 Guangzhou Siemens Ltd. China, Guangzhou Office, Mr Peter Chen, Room 1134-1157 GARDEN Hotel Garden Tower, 368 Huanshi Dong Lu — 466 (20) 3 85 46 88 Fax +86 (20) 3 34 74 54

100015 Beijing Siemens Ltd. China, Beijing Office, Mr Wolfgang Söllner 7, Wangjing Zhonghuan Nan Lu Chaoyang District P.O. Box 8543 **6** + 486 (10) 4 36 32 13

200090 Shanghai Siemens Ltd. China, Shanghai Office, Mr William Cui, 450, Lin Quing Lu = +86 (21) 5 39 54 10 Fax +86 (21) 5 39 54 21

 $\begin{array}{l} 110001 Shenyang \\ Siemens Ltd. China, Shenyang \\ Office, Mr Ren Qi, Sakei Torch \\ Building 23rd Fl. 262A Shifu Da Lu \\ Shen He District \\ \hline {\Theta} + 86 (24) 2 79 02 87 \\ Fax + 86 (24) 2 79 02 86 \end{array}$

Hongkong

Hong Kong Siemens Ltd. Hang Kong A. R. O., Automation System, Division, Mr Keiren Lake, 7th Floor, Regency Centre, 39 Wong Chuk Hang Road $\stackrel{\oplus}{=} + 48 (2) 28 70 76 11$ Fax +85 (2) 25 18 04 11

India

Bangalore 560 001 Siemens Ltd., BAN/AUT-MAP, Mr B. Sunderram Jyoti Mahal, 3rd Floor 49, St. Marks Road, P.O.B. 5212 € +91 (80) 2212101 Fax +91 (80) 22124 18

Bombay 400 018 Siemens Ltd., AUT/M-AP, Mr S. Mistry Head Office B Building 130, Ganpat Jahav Marg. Worli € +91 (22) 4 93 13 50/60 Fax +91 (22) 4 95 08 22

Calcutta 700 071 Siemens Ltd., CAL/AUT-MAP, Mr D. K. Ganguli 6, Little Russel Street, P.O.B. 715 = +91 (33) 2 47 83 74/-80 Fax +91 (33) 2 47 47 83

S7-300 Programmable Controller Hardware and Installation EWA 4NEB 710 608400 DataSheet 4U.com

SIMATIC Partners Outside of Europe

New Delhi 110 002 Siemens Ltd., DEL/AUT-MAP, Mr R. Narayanan 4A, Ring Road, I.P. Estate, P.O.B. 7036 = +91 (11) 3 31 81 44 Fax +91 (11) 3 31 41 78

Indonesia

Jakarta 12870 Dian Graha Elektrika, Jakarta, Power Eng, & Autom. Div., Mr M. Zafrullah JI. Gatot Subroto Kov. 74-75, Mustika centre Building Floor 2a., P.O. Box 4267 $\stackrel{\circ}{=}$ +62 (21) 8 30 65 74 Fax +62 (21) 8 30 74 02

Iran 15914 Teheran Siemens S.S.K., Mr Din-Payuh Khiabane Ayatollah Taleghani32 Siemenshouse, PO.B. 15875-4773, 15 Teheran € +98 (21) 61 41 Fax +98 (21) 6 40 23 89

Japan

Tokyo 141-00 Siemens K.K., ATT, Mr Nakamichi Siemens Fuijikara Building, 8F 11-20, Nishi-Gotanda 2-chome Shinagawa-ku ∰ 481 (3) 34 90 44 37 Fax +81 (3) 34 95 97 92

Pakistan

Karachi - 74400 Siemens Pakistan Eng. Co. Ltd., Power Division, Mr Ilyas ILACO House Abdullah Haroon Road P.O. Box 7158 = +92 (21) 51 60 61Fax +92 (21) 5 68 46 79

Philippines

 $\begin{array}{l} \mbox{Metro Manila}\\ Siemens Inc., Mr. B. Bonifacio\\ 2nd & 4th FI. Sterling Centre Bldg.\\ Esteban cor. de la Rosa\\ Legaspi Village\\ & +63 (2) & 818 48 18\\ Fax +63 (2) & 818 48 22 \end{array}$

Saudi Arabia

Jeddah - 21412 Arabia Electric Ltd. Service Center, Mr Kobeissi, P.O.B. 4621 **&** +9 66 (2) 6 65 84 20 Fax +9 66 (2) 6 65 84 90

Singapore

Singapore 1334 Siemens (Pte) Ltd. Singapore, AUT, Mr Ulf Bexell, 2 Kallang Sector ● +65 8 41 35 28 Fax +65 8 41 35 29

South Korea

Seoul Siemens Ltd., E+A, Mr Kang W. S. Asia Tower Building, 9th Floor 726 Yeoksam-dong, Kang-nam-ku, C.P.O. Box 3001 \Rightarrow +82 (2) 5 27 77 62 Fax +82 (2) 5 27 77 19

Taiwan Taipei 106 Siemens Ltd., AUT 1, Mr Gulden 6th Fl., Cathy Life Insurance Bldg. 296, Jen Ai Road, Sec. 4 = + 8 86 (2) 3 25 48 88 Fax + 8 86 (2) 7 05 49 75

Thailand

Bangkok 10110 Berli Jucker Co. Ltd., Mr Narong Berli Jucker House 99, Soi Rubia, Sukhumvit 42 Road P.O. Box 173 BMC, Bangkok 1000 $\stackrel{\odot}{=} + 66 (2) 3 67 1111$ Fax + 66 (2) 3 67 1000

Vietnam

Hanoi Hanoi Siemens AG, Representation Office Mr Nguyen Huang Giang 18, Phan Boi Chau Street = +84 (4) 25 60 61 Fax +84 (4) 25 62 27

Australia

Adelaide Siemens Ltd. Adelaide Office, CS/I.A., Mr J. Weiss, 315 Gien Osmond Road Glenunga, S.A. 5064 ● +61 (8) 3 79 66 66 Fax +61 (8) 3 79 08 99

Melbourne Siemens Ltd., CS/I.A., Mr N. Gilholm, 544 Church Street Richmond, Victoria 3121 € +61 (3) 4 20 75 20 Fax +61 (3) 4 20 75 00

Perth

Perth Siemens Ltd., CS/I.A., Mr A. Lostrom 153, Burswood Road Victoria Park, W.A. 6100 € +61 (9) 3 62 01 42 Fax +61 (9) 3 62 01 47

Sydney, N.S.W. 2064 Siemens Ltd. Sidney, Industrial Automation, Mr Stephen Coop, 383 Pacific Highway, Artamon $\widehat{=}$ +61 (2) 4 36 78 04 Fax +61 (2) 4 36 86 24

New Zealand

Greenlane, Auckland 5 Siemens Ltd, Auckland Office, CS/I.A., Mr A. Richmond 300 Great South Road P.O.B 17-122 = +64 (9) 5 20 30 33 Fax +64 (9) 5 20 15 56

www.DataSheet4U.com

K

List of Abbreviations

Abbrevia- tions	Description
CP	Communication processor
CPU	Central processing unit
DB	Data block
FB	Function block
FC	Function
FM	Function module
FO	Fiber-optic cable
GD	Global data communication
IM	Interface module
IP	Intelligent I/O
LAD	Ladder logic (programming language representation in STEP 7)
М	Chassis ground
MPI	Multipoint Interface
OB	Organization block
OP	Operator panel
PG	Programming device
PII	Process-image input table
PIQ	Process-image output table
PS	Power supply
SFB	System function block
SFC	System function
SM	Signal module
STL	Statement List (programming language representation in STEP 7)

ww.DataSheet4U.con

www.DataSheet4U.com

Glossary

Accumulator

ww.DataSheet4U.com

The accumulators are registers in the \rightarrow CPU and are used as intermediate memory for loading, transfer, comparison, calculation and conversion operations.

Address

An address is the identifier for a specific operand or operand area (e.g. input I 12.1, memory word MW 25, data block DB 3).

Analog module

Analog modules convert process values (e.g. temperature) into digital values, so that they can be processed by the central processing unit, or convert digital values into analog manipulated variables.

Automation system

An automation system is a \rightarrow programmable controller in the context of SIMATIC S7.

Backplane bus

The backplane bus is a serial data bus over which the modules communicate and over which the necessary power is supplied to the modules. The connection between the modules is established by bus connectors.

Backup battery

The backup battery ensures that the \rightarrow user program in the \rightarrow CPU is stored in the event of a power failure and that defined data areas and bit memories, timers and counters are retentive.

Backup memory

The backup memory provides a backup of memory areas for the \rightarrow CPU without a backup battery. A configurable number of timers, counters, memories and data bytes (retentive timers, counters, memories and data bytes) is backed up.

Bit memory

w DataSheet4U.com

Bit memories are part of the \rightarrow system memory of the CPU for storing interim results. They can be accessed in units of a bit, byte, word or doubleword.

Bus

A bus is a communication medium connecting several nodes. Data transmission can be serial or parallel across electrical conductors or fiber-optic cables.

Bus segment

A bus segment is a self-contained section of a serial bus system. Bus segments are interconnected using repeaters.

Chassis ground

Chassis ground is the totality of all the interconnected inactive parts of a piece of equipment on which a hazardous touch voltage cannot build up even in the event of a fault.

Clock memories

Memories that can be used for clocking purposes in the user program (1 memory byte).

Note

Note in the case of S7-300 CPUs that the clock memory byte is not exceeded in the user program.

Code block

A code block in SIMATIC S7 is a block which contains a section of the STEP 7 user program (in contrast to a \rightarrow data block which only contains data).

Communication processor

Communication processors are modules for point-to-point and bus links.

Compress

The programming device online function "Compress" is used to align all valid blocks contiguously in the RAM of the CPU at the start of the user memory. This eliminates all gaps which arose when blocks were deleted or modified.

Sheet4U.com Configuration

Assignment of modules to racks/slots and (e.g. for signal modules) addresses.

Consistent data

Data whose contents are related and which should not be separated are known as consistent data.

For example, the values of analog modules must always be handled consistently, that is the value of an analog module must not be corrupted by reading it out at two different times.

Counter

Counters are part of the \rightarrow system memory of the CPU. The content of the "counter cells" can by modified by *STEP 7* instructions (e.g. count up/down).

СР

→ Communication processor

CPU

Central processing unit of the S7 programmable controller with open and closed-loop control systems, memory, operating system and interface for programming device.

Cycle time

The scan time is the time taken by the \rightarrow CPU to scan the \rightarrow user program once.

Data block

Data blocks (DB) are data areas in the user program which contain user data. Global data blocks can be accessed by all code blocks while instance data blocks are assigned to a specific FB call.

Data, static

Static data is data which can only be used within a function block. The data is saved in an instance data block belonging to the function block. The data stored in the instance data block is retained until the next function block call.

Data, temporary

Temporary data is local data of a block which is stored in the L stack during execution of a block and which is no longer available after execution.

/w.DataSheet4U.com

Delay interrupt

 \rightarrow Interrupt, time-delay

Device master file

All slave-specific characteristics are stored in a device master file (GSD file). The format of the device master file is defined in the EN 50170, Volume 2, PROFIBUS standard.

Diagnostic buffer

The diagnostic buffer is a buffered memory area in the CPU in which diagnostic events are stored in the order of their occurrence.

Diagnostic interrupt

Diagnostics-capable modules use diagnostic interrupts to report system errors which they have detected to the \rightarrow CPU.

Diagnostics

→ System diagnostics

DP master

A \rightarrow master which behaves in accordance with EN 50170, Part 3 is known as a DP master.

DP slave

A \rightarrow slave which is operated in the PROFIBUS bus system using the PROFIBUS-DP protocol and which behaves in accordance with EN 50170, Part 3 is known as a DP slave.

Equipotential bonding

Electrical connection (equipotential bonding conductor) which gives the bodies of electrical equipment and external conducting bodies the same or approximately the same potential, in order to prevent disturbing or dangerous voltages from being generated between these bodies.

Error display

ww.DataSheet4U.com

The error display is one of the possible responses of the operating system to a \rightarrow runtime error. The other possible responses are: \rightarrow error response in the user program, STOP status of the CPU.

Error handling via OB

If the operating system detects a specific error (e.g. an access error with *STEP* 7), it calls the organization block (error OB) which is provided for this event and which specifies the subsequent behavior of the CPU.

Error response

Response to a \rightarrow runtime error. The operating system can respond in the following ways: conversion of the programmable controller to the STOP mode, call of an organization block in which the user can program a response or display of the error.

External power supply

Power supply for the signal and function modules and the process peripherals connected to them.

FΒ

→ Function block

FC

→ Function

Flash EPROM

FEPROMs are the same as electrically erasable EEPROMS in that they can retain data in the event of a power failure, but they can be erased much more quickly (FEPROM = Flash Erasable Programmable Read Only Memory). They are used on \rightarrow memory cards.

Force

The "Force" function overwrites a variable (e.g. memory marker, output) with a value defined by the S7 user. At the same time the variable is assigned write protection so that this value cannot be modified from any point (including from the STEP 7 user program). The value is retained after the programming device is disconnected. The write protection is not canceled until the "Unforce" function is called and the variable is written again with the value defined by the user program. During commissioning, for example, the "Force" function allows certain outputs to be set to the "ON" state for any length of time even if the logic operations of the user program are not fulfilled (e.g. because inputs are not wired).

ww.DataSheet4U.com

Function

A function (FC) in accordance with IEC 1131-3 is $a \rightarrow \text{code block without} \rightarrow \text{static}$ data. A function allows parameters to be passed in the user program. Functions are therefore suitable for programming complex functions, e.g. calculations, which are repeated frequently.

Function block

A function block (FB) in accordance with IEC 1131-3 is a \rightarrow code block with \rightarrow static data. An FB allows parameters to be passed in the user program. Function blocks are therefore suitable for programming complex functions, e.g. closed-loop controls, mode selections, which are repeated frequently.

Functional grounding

Grounding which has the sole purpose of safeguarding the intended function of the electrical equipment. Functional grounding short-circuits interference voltage which would otherwise have an impermissible impact on the equipment.

GD circle

A GD circle encompasses a number of CPUs which exchange data by means of global data communication and which are used as follows:

- One CPU sends a GD packet to the other CPUs.
- One CPU sends and receives a GD packet from another CPU.

A GD circle is identified by a GD circle number.

GD element

A GD element is generated by assigning the \rightarrow global data to be shared and is identified by the global data identifier in the global data table.

GD packet

A GD packet can consist of one or more \rightarrow GD objects which are transmitted together in a frame.

Global data

Global data is data which can be addressed from any \rightarrow code block (FC, FB, OB). In detail, this refers to memories M, inputs I, outputs Q, timers, counters and data blocks DB. Absolute or symbolic access can be made to global data.

www.DataSheet4U.com

Global data communication

Global data communication is a procedure used to transfer \rightarrow global data between CPUs (without CFBs).

Ground

The conducting earth whose electrical potential can be set equal to zero at any point.

In the vicinity of grounding electrodes, the earth can have a potential different to zero. The term "reference ground" is frequently used to describe these circumstances.

Ground (to)

To ground means to connect an electrically conducting component to the grounding electrode (one or more conducting components which have a very good contact with the earth) across a grounding system.

Instance data block

A data block, which is generated automatically, is assigned to each function block call in the *STEP 7* user program. The values of the input, output and in/out parameters are stored in the instance data block, together with the local block data.

Interface, multipoint

 $\rightarrow MPI$

Interrupt

The \rightarrow operating system of the CPU recognizes 10 different priority classes which control the execution of the user program. These runtime levels include interrupts, e.g. process interrupts. When an interrupt is triggered, the operating system automatically calls an assigned organization block in which the user can program the desired response (for example in an FB).

Interrupt, delay

w.DataSheet4U.com

The time-delay interrupt belongs to one of the priority levels for program execution in the SIMATIC S7 system. The interrupt is generated after expiry of a time delay started in the user program. A corresponding organization block is then executed.

Interrupt, diagnostic

→ Diagnostic interrupt

Interrupt, process

→ Process interrupt

Interrupt, time-of-day

The time-of-day interrupt belongs to one of the runtime levels for program execution on the SIMATIC S7 system. The interrupt is generated on a certain date (or daily) at a certain time (e.g. 9:50 or every hour, every minute). A corresponding organization block is then executed.

Interrupt, watchdog

A watchdog interrupt is generated periodically by the CPU in configurable time intervals. A corresponding \rightarrow organization block is then executed.

Isolated

On isolated I/O modules, the reference potentials of the control and load circuits are galvanically isolated, for example by optocoupler, relay contact or transformer. Input/output circuits can be connected to a common potential.

Load memory

The load memory is part of the central processing unit. It contains objects generated by the programming device. It is implemented either as a plug-in memory card or a permanently integrated memory.

Local data

→ Data, temporary

Master

When they are in possession of the \rightarrow token, masters can send data to other nodes and request data from other nodes (= active node).

Memory card

vw.DataSheet4U.com

Memory cards are memory media in smart card format for CPUs and CPs. They are implemented as \rightarrow RAM or \rightarrow FEPROM.

Module parameters

Module parameters are values which can be used to control the response of the module. A distinction is made between static and dynamic module parameters.

MPI

The multipoint interface (MPI) is the programming device interface of SIMATIC S7. It enables the simultaneous operation of several stations (programming devices, text displays, operator panels) on one or more central processing units. Each station is identified by a unique address (MPI address).

MPI address

 $\rightarrow MPI$

Nesting depth

One block can be called from another by means of a block call. Nesting depth is the number of \rightarrow code blocks called at the same time.

Non-isolated

On non-isolated input/output modules, there is an electrical connection between the reference potentials of the control and load circuits.

OB

→Organization block

OB priority

The \rightarrow operating system of the CPU distinguishes between various priority classes, such as cyclic program scanning, process interrupt-driven program scanning, etc. Each priority class is assigned \rightarrow organization blocks (OB) in which the S7 user can program a response. The OBs have different standard priorities which determine the order in which they are executed or interrupted in the event that they are activated simultaneously.

Organization block

w.DataSheet4U.com

Organization blocks (OBs) represent the interface between the operating system of the CPU and the user program. The processing sequence of the user program is defined in the organization blocks.

Operating mode

The SIMATIC S7 programmable controllers have the following operating modes: STOP, \rightarrow START-UP, RUN.

Operating system of the CPU

The operating system of the CPU organizes all functions and processes of the CPU which are not associated with a special control task.

Parameter

1. Variable of a *STEP 7* code block

2. Variable for setting the behavior of a module (one or more per module). Each module is delivered with a suitable default setting, which can be changed by configuring the parameters in *STEP 7*.

Parameters can be \rightarrow static parameters or \rightarrow dynamic parameters

Parameters, dynamic

Unlike static parameters, dynamic parameters of modules can be changed during operation by calling an SFC in the user program, for example limit values of an analog signal input module.

Parameters, static

Unlike dynamic parameters, static parameters of modules cannot be changed by the user program, but only by changing the configuration in *STEP 7*, for example the input delay on a digital signal input module.

PG

→ Programming device

Priority class

The operating system of an S7-CPU provides up to 26 priority classes (or "runtime levels") to which various organization blocks are assigned. The priority classes determine which OBs interrupt other OBs. If a priority class includes several OBs, they do not interrupt each other, but are executed sequentially.

ww.DataSheet4U.com

PROFIBUS-DP

Digital, analog and intelligent modules of the programmable controller as well as a wide range of field devices to EN 50170, part 3, such as drivers or valve terminals, are installed in a distributed configuration in the direct vicinity of the process - across distances of up to 23 km (14.375 miles).

The modules and field devices are connected to the programmable controller via the PROFIBUS-DP fieldbus and addressed in the same way as centralized I/Os.

PLC

→ Programmable controller

Programmable controller

Programmable controllers (PLCs) are electronic controllers whose function is saved as a program in the control unit. The configuration and wiring of the unit are therefore independent of the function of the control system. The programmable controller has the structure of a computer; it consists of a \rightarrow CPU (central processing unit) with memory, input/output groups and an internal bus system. The I/Os and the programming language are oriented to control engineering needs.

Process image

The process image is part of the \rightarrow system memory of the CPU. The signal states of the input modules are written into the process-image input table at the start of the cyclic program. At the end of the cyclic program, the signal states in the process-image output table are transferred to the output modules.

Process interrupt

A process interrupt is triggered by interrupt-triggering modules on the occurrence of a specific event in the process. The process interrupt is reported to the CPU. The assigned \rightarrow organization block is then processed in accordance with the priority of this interrupt.

Programming device

Programming devices are essentially personal computers which are compact, portable and suitable for industrial applications. They are equipped with special hardware and software for SIMATIC programmable controllers.

RAM

A RAM (random access memory) is a semiconductor read/write memory.

The following can be made retentive:

- Bit memories
 - S7 timers (not for CPU 312 IFM)
 - S7 counters
 - Data areas (only with memory card or integral EPROM)

Reference ground

 \rightarrow Ground

Reference potential

Potential with reference to which the voltages of participating circuits are observed and/or measured.

Restart

When a central processing unit is started up (e.g. by switching the mode selector from STOP to RUN or by switching the power on), organization block OB 100 (complete restart) is executed before cyclic program execution commences (OB 1). On a complete restart, the process-image input table is read in and the *STEP 7* user program is executed starting with the first command in OB 1.

Retentivity

A memory area is retentive if its contents are retained even after a power failure and a change from STOP to RUN. The non-retentive area of memory markers, timers and counters is reset following a power failure and a transition from the STOP mode to the RUN mode.

Runtime error

Error which occurs during execution of the user program on the programmable controller (and not in the process).

w.DataSheet4U.com

Segment

→ Bus segment

Set breakpoint

SFB

→ System function block

ww.DataSheet4U.com

SFC

→ System function

Scan rate

The scan rate determines the frequency with which \rightarrow GD packets are transmitted and received on the basis of the CPU cycle.

Signal module

Signal modules (SM) represent the interface between the process and the programmable controller. Input and output modules can be digital (input/output module, digital) or analog (input/output module, analog).

Slave

A slave can only exchange data with a \rightarrow master when so requested by the master.

Start-up

RESTART mode is activated on a transition from STOP mode to RUN mode. Can be triggered by the \rightarrow mode selector or after power on or an operator action on the programming device. In the case of the S7-300 a \rightarrow restart is carried out.

STEP 7

Programming language for developing user programs for SIMATIC S7 PLCs.

Substitute value

Substitute values are configurable values which output modules transmit to the process when the CPU switches to STOP mode.

System diagnostics

System diagnostics is the term used to describe the detection, evaluation and signaling of errors which occur within the programmable controller. Examples of such errors are program errors or module failures. System errors can be displayed with LED indicators or in *STEP 7*.

System function

A system function (SFC) is a

w.DataSheet4U.com

 \rightarrow function integrated in the operating system of the CPU that can be called, as required, in the STEP 7 user program.

System function block

A system function block (SFB) is a \rightarrow function block which is integrated in the operating system of the CPU and which can be called in the STEP 7 user program as required.

System memory

The system memory is integrated on the central processing unit and implemented as a RAM memory. The system memory includes the operand areas (for example timers, counters, bit memories, etc.) as well as the data areas (for example communication buffers) required internally by the \rightarrow operating system.

System state list

The system status list contains data describing the current status of an S7-300. You can use it to gain an overview of the following at any time:

- The S7-300 configuration
- The current parameterization of the CPU and the parameterizable signal modules
- The current statuses and sequences in the CPU and the parameterizable signal modules.

Terminating resistor

A terminating resistor is a resistor used to terminate a data communication line in order to prevent reflection.

Time-of-day interrupt

 \rightarrow Interrupt, time-of-day

Timer

→ Times

Times (timer cells)

Times are part of the \rightarrow system memory of the CPU. The contents of the "timer cells" are updated automatically by the operating system asynchronously to the user program. *STEP 7* instructions are used to define the exact function of the timer cells (for example on-delay) and initiate their execution (e.g. start).

ww.DataSheet4U.com

Token

Access right on bus

Transmission rate

Rate of data transfer (bps)

Ungrounded

Having no galvanic connection to ground

User memory

The user memory contains the \rightarrow code and \rightarrow data blocks of the user program. The user memory can be integrated in the CPU or can be provided on plug-in memory cards or memory modules. The user program is always executed in the \rightarrow working memory of the CPU, however.

User program

The SIMATIC system distinguishes between the \rightarrow operating system of the CPU and user programs. The latter are created with the programming software \rightarrow *STEP* 7 in the available programming languages (ladder logic and statement list) and saved in code blocks. Data are stored in data blocks.

Varistor

Voltage-independent resistor

Version

The product version differentiates between products which have the same order number. The product version is increased with each upwardly compatible function extension, production-related modification (use of new components) or bug-fix.

Watchdog interrupt

→ Interrupt, watchdog

Working memory

The working memory is a random-access memory in the \rightarrow CPU which the processor accesses during program execution.

In the event of an input access error, a substitute value can be written to the accumulator instead of the input value which could not be read (SFC 44).

www.DataSheet4U.com

Index

A

Accessories, G-1 Accumulator, Glossary-1 backup, 8-5 changing, 7-2 inserting, 6-4 Address, Glossary-1 Address allocation, user-defined, 3-4 Address area, CPU 31x-2, 9-2 Addresses analog module, 3-6 digital module, 3-5 integrated inputs and outputs, 3-8 Addressing, 3-1 default, 3-2 slot-based, 3-2 Ambient temperature, permissible, 2-2 Analog module, Glossary-1 addresses, 3-6 Approvals, A-1 Area of application, A-2 Arrangement, of modules, 2-5

В

Backplane bus, Glossary-1 Backup, 8-5 Backup battery, Glossary-1 backup, 8-5 changing, 7-2 disposal, 7-3 inserting, 6-4 Backup, memory, Glossary-2 Basic circuit diagram, CPU 312 IFM, 8-27 BATF, 8-15 Battery, Glossary-1 Bit memory, Glossary-2 Bus, Glossary-2 backplane, Glossary-1 Bus cable connection to the RS 485 Repeater, 5-21 length of spur lines, 5-13 PROFIBUS, 5-16

Bus connector, 5-15 connecting to the module, 5-18 disconnecting, 5-19 purpose, 5-17 setting the terminating resistor, 5-18 Bus runtimes, PROFIBUS-DP subnet, 10-9 Bus segment, Glossary-2 *See also* Segment BUSF, 9-4, 9-16

С

Cable length, maximum, 5-13 Cable lengths, in the subnet, 5-12 Cable/wiring routing EMC, 4-17-4-19 inside buildings, 4-13 outside buildings, 4-17-4-19 Cables, shielded, connecting, 4-39 Calculation, response time, 10-3 Calculation example, interrupt response time, 10-16 CE, symbol, A-1 Changing modules, 7-5 the accumulator, 7-2 the backup battery, 7-2 Characteristic impedance. See Terminating resistor Chassis ground, Glossary-2 Clearance measurements, 2-3 Clock, CPU, 8-9 Code block, Glossary-2 Cold start, 6-12 with mode selector, 6-12 with mode selector, 6-14 Commissioning, 6-1 CPU 31x-2 as a DP master, 6-17 CPU 31x-2 as DP slave, 6-18 PROFIBUS-DP, 6-16 software prerequisites, 6-1

Communication CPU, 8-11 CPU 318-2, 8-57 global data, 8-11 **PG/OP-CPU**, 8-11 Communication SFCs for configured S7 connections, 8-11 Communication SFCs for non-configured S7 connections, 8-11 Communication via MPI, cycle load, 10-2 Components for MPI subnet, 5-6 for PROFIBUS-DP subnet, 5-6 for the MPI subnet, 5-15 for the PROFIBUS-DP subnet, 5-15 of an S7-300, 1-3 Compression, Glossary-3 Configuration, Glossary-3 arrangement of modules, 2-5 grounded reference potential, 4-9 in the TN-S system, 4-7 lightning protection, 4-20 mechanical, 2-1, 2-2 overvoltage protection, 4-20 ungrounded reference potential, 4-9 with isolated modules, 4-11 with non-isolated modules, 4-13 with process I/Os, 4-5 Configuration frame, 9-32 Connecting a programming device, 6-5 bus connector, 5-18 Connecting cables, for interface modules, 2-7 Consistent data, Glossary-3 CONT_C, CPU 314 IFM, 8-32 CONT_S, CPU 314 IFM, 8-32 Contents of the manual, iii Control elements, CPU, 8-2 Counter, Glossary-3 CPU 312 IFM, 8-18 CPU 314 IFM, 8-32 Counter A/B, CPU 314 IFM, 8-32

CPU

clock. 8-9 communication, 8-11 control elements. 8-2 differences between the versions, 11-4 dimensioned drawing, E-1 display elements, 8-2 fault displays, 8-3 mode selector, 8-4 operating system, Glossary-10 resetting, 6-11 runtime meter, 8-9 status displays, 8-3 system state list, D-1 testing functions, 8-13 wiring, 4-32 CPU 312 IFM, 8-18 basic circuit diagram, 8-27 connecting the power supply, 8-27 grounded configuration, 8-26 integrated functions, 8-18 short-circuit characteristics, 8-27 technical specifications, 8-22 terminal connections, 8-26 CPU 313, 8-28 technical specifications, 8-28 CPU 314, 8-30 technical specifications, 8-30 CPU 314 IFM, 8-32 basic circuit diagrams, 8-45 integrated functions, 8-32 technical specifications, 8-36 wiring schematic, 8-44 CPU 315, 8-48 technical specifications, 8-48 CPU 315-2 DP, 8-50 See also CPU 31x-2 commissioning as a DP master, 6-17 commissioning as a DP slave, 6-18 DP master, 9-3 technical specifications, 8-50

CPU 316-2 DP, 8-53 See also CPU 31x-2 commissioning as a DP master, 6-17 commissioning as a DP slave, 6-18 technical specifications, 8-53 CPU 318-2, 8-56 See also CPU 31x-2 commissioning as a DP master, 6-17 commissioning as a DP slave, 6-18 communication, 8-57 differences to other CPU 300s, 11-2 technical specifications, 8-57 CPU 31x-2 bus interruption, 9-9, 9-20, 9-37 diagnostic addresses for PROFIBUS, 9-8, 9-19 direct communication, 9-36 DP address areas, 9-2 **DP** master diagnosis with LEDs, 9-4 diagnostics with STEP 7, 9-5 DP slave, 9-10 diagnosis with LEDs, 9-16 diagnosis with STEP 7, 9-16 diagnostics, 9-15 intermediate memory, 9-11 status changes, 9-9, 9-20, 9-37 CSA, A-2 Custumer Support, vii Cycle control, processing time, 10-6 Cycle extension, through interrupts, 10-10 Cycle load, communication via MPI, 10-2 Cycle time, 10-2, Glossary-3 calculation example, 10-10 extending, 10-3

D

Data consistent, Glossary-3 statistic, Glossary-4 temporary, Glossary-4 Data block, Glossary-3 Default addressing, 3-2 Delay, of inputs / outputs, 10-8 Delay interrupt, Glossary-8 reproducibility, 10-17 Device. *See* Node Device master file, Glossary-4 Diagnosis LED display, 8-15 module, CPU 315-2 DP as DP slave, 9-25 station, CPU 31x-2 as slave, 9-26 with STEP 7, 8-15 Diagnostic addresses, CPU 31x-2, 9-8, 9-19 Diagnostic buffer, Glossary-4 Diagnostic interrupt, Glossary-4 CPU 31x-2 as DP slave, 9-27 Diagnostic interrupt response time, of the CPUs, 10-15 Diagnostics CPU 31x-2 as DP slave, 9-15 direct communication, 9-37 system, Glossary-14 Differences, 318-2 to other CPUs, 11-2 Digital module, addresses, 3-5 Dimensioned drawing, CPU, E-1 Direct communication CPU 31x-2, 9-36 diagnostics, 9-37 Display elements, CPU, 8-2 Disposal, v backup battery, 7-3 Documentation package, iii DP master, Glossary-4 CPU 31x-2, 9-3 diagnosis with LEDs, 9-4 diagnostics with STEP 7, 9-5 DP slave, Glossary-4 CPU 31x-2, 9-10 diagnosis with LEDs, 9-16 diagnosis with STEP 7, 9-16 DP slave diagnosis, structure, 9-21

Ε

Electrical installation, configuring, 4-2 Electrical interference, protection against, 4-4 EMC, cable/wiring routing, 4-17 Emergency stop, 4-2 Equipotential bonding, 4-22, Glossary-5 Error display, Glossary-5 Error response, Glossary-5 ESD guideline, F-1 Execution time, user program, 10-2

F

Fault displays, CPU, 8-3 Fixing bracket, for shield terminals, 4-39 FM, approval, A-2 Force, Glossary-6 Forcing, 8-13 Frequency meter CPU 312 IFM, 8-18 CPU 314 IFM, 8-32 Front connector wiring, 4-35 wiring position, 4-36 Front connector coding key removing from the front connector, 7-8 removing from the module, 7-7 Front connector encoding, 4-38 Function, FC, Glossary-6 Function block, FB, Glossary-6 Functional grounding, Glossary-6 Fuses, replacing, 7-9

G

GD circle, Glossary-6 receive conditions, 8-12 GD circuit scan rate, 8-12 send conditions, 8-12 GD element, Glossary-6 GD packet, Glossary-7 Global data, Glossary-7 send cycles, 8-12 Global data communication, 8-11 Ground, Glossary-7 Ground (to), Glossary-7 Grounded configuration, CPU 312 IFM, 8-26 Grounding concept, 4-6 GSD file, Glossary-4 Guideline, EGB, F-1 Guidelines, for operating an S7-300, 4-2

Н

Highest MPI address, 5-2 Highest PROFIBUS address, 5-2

I

IEC 1131, A-1

IEC counters, SFBs, list of, C-8 IEC function. C-1 IEC functions, FCs, list of the, C-8 IEC timers, SFBs, list of, C-8 Inputs, delay time, 10-8 Inputs/outputs integrated, CPU 312 IFM, 8-18 integrated, CPU 314 IFM, 8-32 Installation, 2-9 configuring, 2-2 electrical, configuring, 4-2 horizontal, 2-2 of the modules, 2-13 vertical, 2-2 Installation dimensions, of the modules, 2-4 Installing RS 485 repeater, 5-20 the rail, 2-9 Instance data block, Glossary-7 Insulation monitoring, 4-10 Integrated functions, CPU 314 IFM, 8-32 Integrated inputs and outputs, addresses, 3-8 Integrated inputs/outputs of the CPU 312 IFM, 8-18 of the CPU 314 IFM, 8-32 wiring, 4-35 Interface, CPU, 8-7 Interface module, connecting cables, 2-7 Interface modules, 2-6 Intermediate memory CPU 31x-2, 9-11 for data transfer, 9-11 Internet, up-to-date information, vii Interrupt, Glossary-8 delay, Glossary-8 diagnostic, Glossary-4 process-, Glossary-11 time-of-day, Glossary-8 watchdog, Glossary-8 Interrupt response time, 10-14 calculation example, 10-16 Interrupts CPU 315-2 DP as DP slave, 9-28 cycle extension, 10-10 Isolated, Glossary-8

Κ

Key, inserting, 2-15 Key switch. *See* Mode selector

L

Labeling strip, 4-38 Laying rules, PROFIBUS bus cable, 5-17 Lightning protection, 4-20 high-voltage protection, 4-23 low-voltage protection, 4-27 Lightning protection zones, 4-21 Lightning strike, effects, 4-21 Load circuit, grounding, 4-6 Load memory, Glossary-8 Load power supplies, features, 4-6 Load power supply, from the PS 307, 4-8 Local data, Glossary-9

Μ

Mains voltage, set to the power supply, 4-34 Maintenance. See Replacing Manufacturer ID, CPU 31x-2 as DP slave, 9-24 Master PROFIBUS address, 9-24 Memory backup, Glossary-2 load, Glossary-8 system, Glossary-14 user, Glossary-15 working, Glossary-16 Memory card, 8-6, Glossary-9 changing, 6-3-6-20 inserting, 6-3-6-20 purpose, 8-6 Memory reset, 6-11 MPI parameters, 6-16 with mode selector, 6-12 Mode selector, 8-4 cold start, 6-12 cold start with, 6-14 resetting the memory with, 6-12 Module accessories, G-1 arrangement, 2-5 installation dimensions, 2-4 non-isolated, 4-13 removing, 7-6 Module diagnosis, CPU 31x-2 as DP slave, 9-25 Module parameter, Glossary-9 Module start address, 3-2

Modules installation. 2-13 isolated, 4-11 open, 2-1 replacing, 7-5 MPI, Glossary-9 MPI address highest, 5-2 recommendation, 5-4 MPI addresses, rules, 5-3 MPI interface, 8-7 MPI subnet cable lengths, 5-12 components, 5-6, 5-15 configuration example, 5-9, 5-11 configuration rules, 5-5 segment, 5-12 MRES mode, 8-4

Ν

Nesting depth, Glossary-9 Network components, 5-15 Networking, 5-1 Node, 5-2 Non-isolated, Glossary-9

0

OB, B-1, Glossary-10 OB 40 start information for inputs/outputs, 8-33 start information for integrated inputs/outputs, 8-19 OB priority, Glossary-10 Open modules, 2-1 Operating an S7-300 guidelines, 4-2 rules, 4-2 Operating mode, Glossary-10 Operating system of the CPU, Glossary-10 processing time, 10-6 Organization block, B-1, Glossary-10 Outputs, delay time, 10-8 Overvoltage, 4-21 Overvoltage protection, 4-17, 4-20

Ρ

Parameter, Glossary-10 Parameter assignment frame, 9-30 Parameters, modules, Glossary-9 PG/OP-CPU communication, 8-11 PNO, certificate, A-3 Positioning, CPU 314 IFM, 8-32 Power connector, 4-32 Power Consumption, of an S7-300, rules, 4-4 Power loss, of an S7-300, rules, 4-4 Power supply, setting the mains voltage, 4-34 Power supply module, wiring, 4-32 Priority, OB, Glossary-10 Priority class, Glossary-11 Process image, Glossary-11 Process image update, processing time, 10-6 Process interrupt, Glossary-11 CPU 312 IFM, 8-18 CPU 314 IFM, 8-32 CPU 31x-2 as DP slave, 9-27 Process interrupt handling, 10-15 Process interrupt response time of the CPUs, 10-14 of the signal modules, 10-15 Processing time cycle control, 10-6 operating system, 10-6 process image update, 10-6 user program, 10-7 PROFIBUS address, highest, 5-2 PROFIBUS addresses recommendation, 5-4 rules, 5-3 PROFIBUS bus cable, 5-15, 5-16 laying rules, 5-17 PROFIBUS-DP, Glossary-11 commissioning, 6-16 **PROFIBUS-DP** interface, 8-7 **PROFIBUS-DP** subnet bus runtimes, 10-9 cable lengths, 5-12 components, 5-6, 5-15 configuration example, 5-10, 5-11 configuration rules, 5-5 Programming device connecting, 6-5 to an ungrounded configuration, 6-9 via spur line to subnet, 6-8 Protection against electrical interference, 4-4

Protective conductor connection, on rail, 2-12 Protective measures, for the whole plant, 4-5 PULSEGEN, CPU 314 IFM, 8-32

R

Rail installing, 2-9 length, 2-4 protective conductor connection, 2-12 Receive conditions, GD circuit, 8-12 Recycling, v Reference literature, H-1 Reference potential grounded, 4-9 ungrounded, 4-9 Release. See Version Removing, module, 7-6 Repeater. See RS 485-Repeater Replacement parts, G-1 Replacing fuses. 7-9 modules, 7-5 Reproducibility, delay/watchdog interrupts, 10-17 Reset, with mode selector, 8-4 Response time, 10-3 calculation, 10-3 calculation example, 10-10 calculation of, 10-6 interrupt, 10-14 longest, 10-5 shortest, 10-4 Restart, Glossary-12 Retentivity, Glossary-12 Routing, 8-11 RS 485 repeater, 5-15, 5-19 connecting the bus cable, 5-21 RS 485-Repeater, installation, 5-20 Rules for operating an S7-300, 4-2 for the configuration of a subnet, 5-5 for wiring, 4-30 RUN mode, 8-4 Runtime error, Glossary-12 Runtime meter, CPU, 8-9

S

S7 timers, updating, 10-7 S7-300. 1-2 accessories, G-1 components, 1-3 grounding concept, 4-6 replacement parts, G-1 switching on for the first time, 6-10 Scan rate, Glossary-13 GD circuit, 8-12 Scope, of this manual, iv Segment, 5-5 MPI subnet, 5-12 Send conditions, GD circuit, 8-12 Send cycles, for global data, 8-12 SF, 8-15 SFB, C-1 SFBs, list of the, C-2 SFC, C-1 SFCs, list of the, C-2 Shield contact element, 4-39 Shield terminal, 4-39 Short-circuit characteristics, CPU 312 IFM, 8-27 Signal module, Glossary-13 SIMATIC S7, reference literature, H-1 SINEC L2-DP. See PROFIBUS-DP Slot number, 3-2 Slot numbers, assigning, 2-15 Spur lines, length, 5-13 SSL. See System state list Standards, A-1 Start information for inputs/outputs, OB 40, 8-33 Start information for integrated inputs/outputs, OB 40, 8-19 Start-up, Glossary-13 CPU 31x-2 DP as a DP slave, 6-19 CPU 31x-2 DP as DP master, 6-17 Station diagnosis, CPU 31x-2 as DP slave, 9-26 Station status 1 to 3, 9-22 Status displays, CPU, 8-3 STOP, LED, 8-15 STOP mode, 8-4 Strain relief, 4-37 Subnet, 5-1 Substitute value, Glossary-13 Supply, grounded, 4-5

Surge protection, components, 4-26, 4-27 Switching on, first time, 6-10 System diagnosis, Glossary-14 System function, SFC, Glossary-14 System function block, SFB, Glossary-14 System functions, C-1 System memory, Glossary-14 System state list, D-1

Т

Terminating resistor, 5-6, Glossary-14 example, 5-8 setting on the bus connector, 5-18 Testing functions, 8-13 Time-of-day interrupt, Glossary-8 Times (timer cells), Glossary-15 Tips and tricks, 12-1

U

UL, A-2 Ungrounded, Glossary-15 Ungrounded configuration, connecting a programming device, 6-9 Updating, of the S7 timers, 10-7 User memory, Glossary-15 User program, Glossary-15 processing time, 10-7 User program execution time, 10-2 User-defined address allocation, 3-4

۷

Version, Glossary-15

W

Watchdog interrupt, Glossary-8 reproducibility, 10-17 Wiring, 4-30 integrated inputs/outputs, 4-35 the CPU, 4-32 the front connector, 4-35 the power supply module, 4-32 Wiring position, of the front connector, 4-36 Wiring rules, 4-30 Working memory, Glossary-16 www.DataSheet4U.com

То

Siemens AG A&D AS E 82 Postfach 1963 D–92209 Amberg

From

Your Name:	 	 	 	 	 	
Your Title:	 	 	 	 	 	
Company Name:	 	 	 	 	 	
Street:	 	 	 	 	 	
City, Zip Code:	 	 	 	 	 	
Country:	 	 	 	 	 	
Phone:	 	 	 	 	 	

Please check any industry that applies to you:

- □ Automotive
- Chemical
- Electrical Machinery
- Food

X

- □ Instrument and Control
- Nonelectrical Machinery
- Petrochemical

- Pharmaceutical
- Plastic
- D Pulp and Paper
- Textiles
- **Transportation**
- □ Other _ _ _ _ _ _ _ _ _ _ _ _

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our publications. Please take the first available opportunity to fill out this questionnaire and return it to Siemens.

Please give each of the following questions your own personal mark within the range from 1 (very good) to 5 (poor).

- 1. Do the contents meet your requirements?
- 2. Is the information you need easy to find?
- 3. Is the text easy to understand?
- 4. Does the level of technical detail meet your requirements?
- 5. Please rate the quality of the graphics/tables:

Additional	comments:
------------	-----------

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 _
_	_	_	_	_	_	_	_	-	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	-	_			 -
_	_	_	—	_	_	_	-	—	-	-	—	_	_	_		_	_	—	—	_	-	-	_	_	_	_	-	 	 	_	_	-			 -
_	_	_	-	-	_	_	_	_	_	-	_	_	_	_	- •		_	_	_	-	-	-	—	_	_	_	-	 	 	_	_	_	_ ·	- •	 -
_	_	_	-	-	_	_	_	_	_	-	_	_	_	_	- •		_	_	_	-	-	-	—	_	_	_	-	 	 	_	_	_	_ ·	- •	 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	- •		_	_	_	_	-	_	_	_	_	_	_	 	 	_	_	_		- •	 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -

То

Siemens AG A&D AS E 82 Postfach 1963 D–92209 Amberg

From

Your Name:	 	 	 	 	 	
Your Title:	 	 	 	 	 	
Company Name:	 	 	 	 	 	
Street:	 	 	 	 	 	
City, Zip Code:	 	 	 	 	 	
Country:	 	 	 	 	 	
Phone:	 	 	 	 	 	

Please check any industry that applies to you:

- □ Automotive
- Chemical
- Electrical Machinery
- Food

X

- □ Instrument and Control
- Nonelectrical Machinery
- Petrochemical

- Pharmaceutical
- Plastic
- D Pulp and Paper
- Textiles
- **Transportation**
- □ Other _ _ _ _ _ _ _ _ _ _ _ _

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our publications. Please take the first available opportunity to fill out this questionnaire and return it to Siemens.

Please give each of the following questions your own personal mark within the range from 1 (very good) to 5 (poor).

- 1. Do the contents meet your requirements?
- 2. Is the information you need easy to find?
- 3. Is the text easy to understand?
- 4. Does the level of technical detail meet your requirements?
- 5. Please rate the quality of the graphics/tables:

Additional	comments:
------------	-----------

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 _
_	_	_	_	_	_	_	_	-	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	-	_			 -
_	_	_	—	_	_	_	-	—	-	-	—	_	_	_		_	_	—	—	_	-	-	_	_	_	_	-	 	 	_	_	-			 -
_	_	_	-	-	_	_	_	_	_	-	_	_	_	_	- •		_	_	_	-	-	-	—	_	_	_	-	 	 	_	_	_	_ ·	- •	 -
_	_	_	-	-	_	_	_	_	_	-	_	_	_	_	- •		_	_	_	-	-	-	—	_	_	_	-	 	 	_	_	_	_ ·	- •	 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	- •		_	_	_	_	-	_	_	_	_	_	_	 	 	_	_	_		- •	 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	 	 	_	_	_			 -